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Abstract
Animal daily routines represent a compromise between maximizing foraging success and op-

timizing physiological performance, while minimizing the risk of predation. For ectothermic

predators, ambient temperature may also influence daily routines through its effects on physi-

ological performance. Temperatures can fluctuate significantly over the diel cycle and ecto-

thermsmay synchronize behaviour to match thermal regimes in order to optimize fitness. We

used bio-logging to quantify activity and body temperature of blacktip reef sharks (Carcharhi-
nus melanopterus) at a tropical atoll. Behavioural observations were used to concurrently

measure bite rates in herbivorous reef fishes, as an index of activity for potential diurnal prey.

Sharks showed early evening peaks in activity, particularly during ebbing high tides, while

body temperatures peaked several hours prior to the period of maximal activity. Herbivores

also displayed peaks in activity several hours earlier than the peaks in shark activity. Sharks

appeared to be least active while their body temperatures were highest and most active while

temperatures were cooling, although we hypothesize that due to thermal inertia they were still

warmer than their smaller prey during this period. Sharks may bemost active during early

evening periods as they have a sensory advantage under low light conditions and/or a ther-

mal advantage over cooler prey. Sharks swam into shallow water during daytime low tide pe-

riods potentially to warm up and increase rates of digestion before the nocturnal activity

period, which may be a strategy to maximize ingestion rates. “Hunt warm, rest warmer”may

help explain the early evening activity seen in other ectothermic predators.

Introduction
Animals must make decisions regarding when and how intensely to vary rates of activity. The
precise function of increased activity will change over different time frames, but over shorter
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time scales is likely related to foraging or predator avoidance. For larger predators, safety may
not be the dominant driver of activity, but the animal must still decide when and how intensely
to forage. As a predator becomes more active, its chance of locating prey will increase. Howev-
er, there is a metabolic cost associated with increased activity: the higher the intensity of forag-
ing, the higher the potential for body condition to decrease, especially if the predator is not
successful in capturing prey [1]. This compromise between increased chance of foraging suc-
cess and loss of body condition may lead to daily routines over a diel cycle, with peaks in activi-
ty followed by resting periods [1].

Many predators, in both terrestrial and marine systems, display peaks in activity during cre-
puscular periods particularly during the early evening [2–6]. The timing of these peaks is
thought to coincide with periods of increased nocturnal foraging success, but in some cases
may also be related to predator avoidance [5]. However, with ectothermic predators it is also
important to consider environmental changes in temperature as thermal effects may play a
strong role in an animal’s daily routines [7, 8]. Ectotherms are intimately connected to changes
in environmental temperature, from the molecular and cellular levels (e.g. enzyme kinematics,
metabolic rates) to the individual and population levels (e.g. rates of digestion, predator func-
tional response, trophic interactions; [9, 10]). In general, the influence of temperature on beha-
vioural or physiological performance can be described by a thermal performance curve [11].
Peak performance occurs at an optimal temperature (Topt), with temperatures< Topt causing a
gradual decline in performance (described by a Gaussian function), and temperatures> Topt

leading to a rapid decline (quadratic function) until some critical temperature is reached [11].
Therefore, species occupy a thermal niche bounded by critical temperatures within which per-
formance may vary widely and non-linearly.

Over diel time frames, temperature changes can be significant and ectotherms may modify
behaviours to take advantage of thermal regimes. Two behavioural routines have been pro-
posed for marine predators: ‘hunt warm, rest cold’, and ‘hunt cold, rest warm’ [12]. With ‘hunt
warm, rest cold’ foraging occurs in habitats or time periods of higher temperatures, elevating
metabolic rates and improving foraging efficiency [7]. Energy expenditure is then minimized
by resting in cooler waters, thereby reducing metabolic rates. A reduction in body temperature
may cause an increase in digestive efficiency by reducing overall rates of digestion, exposing
prey to digestive enzymes for longer periods of time [13]. Alternatively, ‘hunt cold, rest warm’
describes the case of an animal resting in warmer water, which appears counterproductive as
energy expenditure will increase. However, rates of gastric evacuation will also increase, leading
to a quicker return of appetite thereby potentially maximizing feeding rates [12, 14, 15]. It is
likely that the optimal behavioural routine is dependent on prey abundance. If prey is abundant
then we may expect the predators to maximize feeding rates (i.e. hunt cold, rest warm), while
in low resource environments it may be more advantageous to maximize the efficiency of ener-
gy extraction (i.e. ‘hunt warm, rest cold’, see [12]).

Many large carnivores are ‘digestion-limited’ in that they spend more time digesting than
they do searching for food [16]. Furthermore, the increased metabolic rate associated with di-
gestion (‘specific dynamic action’) can reduce the activity of the animal, as the animal will be
closer to the upper limit of its metabolic scope (e.g. [17]). Therefore, it is important to consider
the role digestion plays in animal movements, and how temperature can influence it. Finally,
the daily routines of predators will also be related to the behaviour of potential prey, and tem-
perature can have a significant influence on the relationship between the two. There may be
asymmetries in the thermal response of consumer-resource dynamics, due to variation in body
velocities or prey escape responses and these can qualitatively and quantitatively change preda-
tor-prey dynamics [8, 10]. Testing these ideas in the field requires an understanding of both
predator and prey activity cycles and the role of temperature in driving them.

Active while Cooling in Tropical Shark
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Clearly there can be many potential drivers of daily activity cycles and disentangling them is
difficult, particularly for marine predators where visual observations of behaviour are difficult
or impossible. Many species of shark are upper level predators and the timing of their activity
has ecological and conservation consequences, as they can directly influence the daily routines
and habitat selection of lower trophic levels [18]. The majority of sharks are thought to be noc-
turnal hunters although this assumption often comes from fishing data or horizontal and verti-
cal movement data, all of which can make interpretation of activity difficult [2, 19]. However,
the development of animal-borne sensors that directly measure activity and behaviour now al-
lows hypotheses regarding predator behaviour to be tested in the field [2, 20, 21, 22].

The blacktip reef shark (Carcharhinus melanopterus, Quoy and Gaimard 1824) is found in
shallow reef and coastal habitats in tropical ecosystems of the Pacific and Indian Oceans [23,
24]. Adult blacktip reef sharks must swim continuously in order to extract enough oxygen
from seawater to meet metabolic demands, and therefore never truly rest. They use relatively
small home ranges and in some locations females have been hypothesized to behaviourally
thermoregulate, swimming into warm, shallow water during the day, presumably to increase
body temperatures [23, 24]. Visual observations of blacktip reef sharks while they were in shal-
low water suggested that sharks were not foraging, although activity was not specifically re-
corded [24]. We used bio-logging to quantify the daily activity cycles, and assess the drivers of
these cycles, for blacktip reef sharks at Palmyra, a remote Pacific atoll. We simultaneously used
behavioural observations of focal herbivorous fishes to quantify activity cycles of potential di-
urnal prey. Blacktip reef sharks will have relatively slow rates of digestion, but those at Palmyra
reside in a location where prey abundance is high [25, 26]. We therefore predict that these reef
sharks use a ‘hunt cold, rest warm’ strategy, to maximize ingestion rates [23, 25]. Our specific
predictions are that a) blacktips are most active during early morning periods when they are
cooler, b) sharks are least active during late afternoon when temperatures are high, and c) rates
of digestion are highest during periods when sharks are least active which also coincides with
warmer body temperatures.

Materials and Methods

Ethical standards
Tagging experiments were approved by the University of California Santa Barbara IACUC
(#856), and University of Hawaii IACUC (# 03-66-3). All research carried out at Palmyra atoll
was approved by US Fish and Wildlife service (USFWS).

Study site
Palmyra atoll (5°54’N; 162°05’W) is a US National Fish and Wildlife Refuge located just north
of the equator in the central Pacific Ocean (Fig 1). Due to bans on fishing, large numbers of
predators (sharks, snapper, and trevally) are found at the atoll [26]. Habitat types consist of
deep murky lagoons (50 m), surrounded by sandflats which are exposed to air during extreme
low tides. These connect to backreefs (2–3 m depth, high vertical relief coral, good visibility)
which transition to forereefs consisting of a steep slope with high coral cover and high water
clarity (Fig 1, for more details see [23, 26]). All research conducted at Palmyra was approved
by USFWS and The Nature Conservancy.

Telemetry and data-loggers
A combination of acoustic telemetry and animal-borne data-loggers were used to quantify
shark activity, body temperature, and habitat use. Transmitters measure parameters over
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periods of months to years, but the temporal resolution is low (minutes to hours or days).
Acoustic transmitters consisted of a mix of V16, V13 and V9 types (69 kHz, Vemco Ltd., Nova
Scotia, Canada). Transmitters were coupled with sensors allowing remote measurements of
behavioural and physiological data. Blacktip reef sharks were caught on the backreefs using
hook and line and restrained alongside the boat. We inverted sharks on their backs inducing
tonic immobility, a natural trance-like state (e.g. [23]). Six sharks were tagged with V13AP or
V9AP (42x13 mm 12.2 g, 43x9 mm 6.1g) transmitters which measure acceleration and swim-
ming depth. The acceleration transmitters measure body acceleration along 3-axes (at 5 Hz),
filter out the static contribution due to gravity, and over a 17 second interval calculate a root
mean square (RMS) acceleration value from the 3 axes combined, which is then transmitted.
There is a delay of 20–35 seconds between transmissions. Acceleration sensors should be sta-
tionary relative to the animal’s body axis, so we externally attached AP transmitters to the dor-
sal fin (to avoid rolling inside the body cavity). To quantify changes in body temperature, four
of these six individuals also had a V16T (54x16 mm, 19 g) transmitter surgically implanted
into the body cavity (resolution 0.1°C, Table 1), via a 2–3 cm incision in the ventral surface.
The incision was made through the dermal and outer muscle layer, so that the transmitter was
residing inside the body cavity adjacent to the viscera. A single uninterrupted suture was used
to close the wound and the animal was measured, sexed, and released. Total time between cap-
ture and release was less than 10 min. A network of 65 underwater omnidirectional acoustic re-
ceivers (VR2W, Vemco Ltd.) are maintained throughout Palmyra (all habitat types), which
listen for transmitter equipped sharks (Fig 1). Each time a transmitter equipped shark swims
within range (range varies by habitat type from 200 m in backreefs to 500 m in lagoons and
forereefs, [27]) of an acoustic receiver, the time, date, and sensor values (i.e. depth, acceleration,
body temperature) are recorded, along with the unique transmitter code so that individual ani-
mals can be identified. We retrieved, downloaded and re-batteried listening stations annually.
All sharks were tagged in July and August of 2011 and 2012.

To obtain higher temporal resolution behavioural data, four additional sharks were fitted
with data-logger packages. Data-loggers are attached to sharks for periods of several days, and
record continuously and at high frequency, but must be recovered in order for data to be ob-
tained (unlike transmitters). Two sharks were fitted with ORI400-D3GT loggers (12-mm

Fig 1. Map of Palmyra Atoll showing different habitat types and the location of acoustic listening stations (yellow circles). Black circles around
receivers shows approximate detection radius.

doi:10.1371/journal.pone.0127807.g001
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diameter, 45-mm length, and 9 g; Little Leonardo Co., Tokyo, Japan) which had sensors that
recorded 3D acceleration (20 Hz), depth and water temperature (sample rate 1 sec-1), while an
additional two sharks were fitted with W190L-PD3GT loggers (21-mm diameter, 117-mm
length, and 60 g; Little Leonardo Co.) which also record swim speed (sample rate 1 sec-1). In
order to record specific behaviours and habitat use, we fitted one shark with a Little Leonardo
DVL400 video camera (23 x 112 mm, 80 g, recording duration 6 h), which recorded at 640 x
480 pixels at 30 frames/second. To avoid filming during periods of potential stress associated
with capture, the camera was programmed to begin recording 24 h after the animal was re-
leased. All sensors were embedded in syntactic foam floats and fitted to the dorsal fin via a tie-
wrap through two small punctures in the fin (holes were small as only the flattened tie-wrap
had to fit through). Four days after the animal was released, a timer caused the tie-wrap to
break and the entire package floated to the surface [20]. The data-logger packages were then lo-
cated and retrieved via an embedded VHF transmitter. A couple of individuals that had been
fitted with data-logger packages were re-sighted a year later with no markings or wounds of
any sort on the dorsal fins.

We calculated Overall Dynamic Body Acceleration (ODBA) from 3D acceleration data as a
metric of activity. ODBA was calculated by removing the static contribution of gravity from ac-
celeration data using a high-pass filter, and then combining the absolute values of acceleration
from all three axes [28, 29]. ODBA correlates well with oxygen consumption and energy expen-
diture in a wide range of animals, including sharks [28, 29]. We did not aim to calculate absolute
energy expenditure but we felt that ODBA provided a reasonable overall measure of activity.

Quantifying when rates of digestion are highest provides further insights into the drivers of
diel behaviour. The stomach is a muscular organ that mixes prey items with digestive fluids
and transfers digested products from the stomach to the intestine. Hence, real-time measure-
ments of gastric motility provide insight into the state of digestion [25, 30]. We recorded motil-
ity using an inflection sensor coupled to a data-logger (140 mm length, 19 mm diameter, mass
in air 45 g, earth & Ocean Technologies, Kiel, Germany). The sensor consists of a piezoelectric
film which generates a voltage every time the film flexes, with the data-logger sampling a single
value every 15 seconds, based on the number and speed of inflections [30]. The data-logger
was attached to a V13 acoustic pinger and force fed to a single blacktip reef shark at Palmyra in

Table 1. Blacktip reef sharks were fitted with acoustic transmitters or data-loggers.

Individual Tagging date Total Length (cm) Transmitter/Data-logger type Duration detected (days)

1 2/8/11 116 V9AP 35

2 2/8/11 118 V9AP 23

3 21/8/12 122 V13AP, V16T 305

4 21/8/12 133 V13AP, V16T 295

5 24/8/12 127 V13AP, V16T 307

6 24/8/12 105 V13AP, V16T 352

7 4/7/13 123 ADT 4

8 10/7/13 117 ADT 4

9 15/7/13 113 ADTS 4

10 19/7/13 127 ADTSV 4

11 23/9/07 110 G 21

Vemco acoustic tags are designated ‘V’. VAP are acceleration/depth sensing acoustic transmitters, VT are temperature sensing acoustic transmitters.

ADT are data-loggers with 3-axes acceleration, depth and temperature sensors. ADTS additionally include speed sensors, and ADTSV also includes a

video camera. G is a gastric motility data-logger. All sharks were female.

doi:10.1371/journal.pone.0127807.t001
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September 2008. The shark retained the logger for 21 days then regurgitated it, after which we
located the device using a diver held underwater hydrophone. There appeared to be logger fail-
ure one week after deployment, so we only analysed data from the first seven days of deploy-
ment. We periodically located the shark during the deployment period and snorkelers visually
observed its behaviour, with no evidence of stress or unusual behaviours. Previous captive ex-
periments showed that blacktip reef sharks will resume feeding within 24 h of logger deploy-
ment [25]. The first 24 h of data were discarded. Estimated mass of all sharks was 7–10 kg so
tag: body mass ratios were all below 1.4%, which has been suggested as a cut-off for other pred-
atory fishes [31].

Potential prey activity
The diet of blacktip reef sharks has not been well quantified but will include a wide range of tel-
eosts [32]. As a metric of potential prey activity, divers followed common herbivorous fishes
on Palmyra’s backreefs and recorded foraging activity (bite rates) defined as the number of
bites per minute. These observations only provide information on diurnal prey species as we
were limited by safety regulations that prohibit diving at night. Three species were tracked:
Acanthurus nigricans, Ctenochaetus striatus, and Acanthurus lineatus. During observations,
the diver stayed a significant distance from the focal species so as not to disturb its behaviour.
For each focal individual, all bites were recorded during a 5-minute interval to determine a bite
rate. Follows were conducted throughout the day in the same backreef sites as shark tagging, si-
multaneously with the period of data-logger deployments.

Data analysis
Sensor data were analysed using generalized additive mixed models (GAMMs), which allow for
both the specification of serial auto-correlation and the inclusion of shark identity as a random
effect to account for differences between individuals. For all analyses, we sub-sampled telemetry
data with one-hour mean values, while data from loggers were sampled over one minute
means. We used an AR1 function with time as the position variable to account for serial correla-
tion in time series data. The AR1 function also calculates the magnitude of serial dependence as
a function of distance between time steps; the correlation at lag = 1 was then included as a term
in the model to specify the correlation structure. All GAMMs were constructed with a Gaussian
error distribution, and all covariates were modelled with smooth splines (with the exception of
month in the acceleration transmitters which was included as a control). We were primarily in-
terested in how sensor variables (ODBA, acceleration, swimming depth, body temperature, gas-
tric motility) varied with time of day and tidal or lunar cycle, which were modelled with cyclic
smoothing splines. ODBA and speed were modelled controlling for depth (to isolate tide ef-
fects). Data-logger deployment was concurrent with the installation of a tidal station, providing
high resolution data on tidal height. Tide data was not available during transmitter deployments
so instead we modelled lunar cycle as a covariate. Lunar phase was included as % illumination
and was downloaded from the United States Naval Observatory Astronomical Applications De-
partment (http://aa.usno.navy.mil/data/docs/MoonFraction.php). Although we cannot directly
translate lunar phase into tidal cycle, high and low values of percentage illumination indicate
extreme tidal highs and lows. To remove seasonal effects, and because we were interested in be-
haviour over diel time scales, we only analysed body temperature data from July-November. All
statistics were generated in R (R Development Core team 2013) using themgcv package [33]
and models were selected using Akaike Information Criteria, Bayesian Information Criteria,
and Maximum Likelihood Estimates. We combined animals for analysis, but due to small sam-
ple sizes we also analysed data for individuals separately (Online Resources).
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Results

Telemetry and data-loggers
Telemetry data were collected over a two-month period with sharks showing clear patterns of
activity and swimming depth associated with diel and lunar cycles (Fig 2, Table 2, S1A Table).
Acceleration levels were highest at night and during the periods of both the new and full
moons (Fig 2A and 2B). Sharks used deeper water during the day when they were least active
and shallower water at night (range of depth change was only 2–4 m, Fig 2C, Table 2). There
were clear patterns in body temperature, with highest temperatures in the late afternoon (ap-
proximately 15:00–16:00) and lowest values occurring in the morning (5:00–10:00, body tem-
perature varied by 2.2–2.7°C, Fig 2A, S1A and S1D Table, S1D–S1F Fig). The peak in activity
recorded by the transmitters lagged several hours behind the peak in body temperature.

Over the shorter time period measured by the data-loggers, all sharks demonstrated a peak
in activity from 19:00–21:00, and for three of those four sharks this coincided with the ebbing
tide (Fig 3A, Table 2, S1B Table, S1A–S1C Fig). Activity generally remained high throughout
the evening and lowest levels of activity occurred between 10:00–15:00. ODBA also varied over
the tidal cycle being highest at times of high (but ebbing) tides (Table 2, S1C Fig). In all cases,
peaks in ODBA lagged behind the peak in ambient water temperature by 3–5 h (Fig 3A). Low-
est values of ODBA occurred when the sharks were in the warmest water. Water temperature
over the diel cycle varied by 3–4°C.

Swimming depth (from loggers) varied over the diel cycle with animals generally using shal-
lower water at night but was primarily tidally driven, with animals swimming in very shallow
water during the low tide (Table 2, S1C Table). Tides in Palmyra are semi-diurnal with cycles
of approximately 6 h. During these periods of very shallow swimming during the day, pitch
variability decreased (simply due to sharks swimming at the surface), but there were no obvious
increases in swim speed or ODBA (S2 Fig). Video footage recorded during the morning low
tide period shows that the shark was in shallow backreef and sandflat habitats. The individual
frequently associated with schools of mullet (Mugil cephalus), other sharks and trevally, but
there was no clear evidence of foraging (Fig 4, S2 Fig and S1 Video). At times the shark would
swim at the surface where external temperatures increased by up to 2°C (S2 Fig and S1 Video).
Two sharks showed daily differences in the extent of diel changes in ambient temperature (like-
ly due to cloud cover or rain during the day): the evening peaks in activity were reduced or ab-
sent on days when there were minimal diel temperature peaks (Fig 5). During the seven days of
deployment, the single shark fitted with a digestion logger showed clear daily peaks in motility
with a small peak at dawn (approximately 6:00) and a larger one at 16:00–17:00 (Fig 3B,
Table 2).

Potential prey activity
In total, 312 focal follows were performed between 9:24 and 17:00 on the Palmyra backreefs.
Foraging activity increased throughout the day with a peak in bite rates between 14:00–15:00
(quadratic regression; F(213) = 51.87, R2 = 0.32, p< 0.001). The peak in bite rates coincided
with the period when water temperatures were highest. Subsequently, bite rates slowly declined
until the final observation period, limited by daylight (Fig 3C).

Discussion
Sharks showed activity cycles that were related to both diel and tidal periods and contrary to
our predictions were most active during early evening periods and ebbing high tides. While it
is difficult to translate changes in ODBA to a simple biological metric (without respirometry
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Fig 2. Effects of time of day and lunar cycle on shark activity, swimming depth and body temperature.
Results of generalized additive mixed models (GAMMs) for telemetry data from blacktip reef sharks. Shown
are diel changes in acceleration and body temperature (A), change in activity with lunar cycle (B) and diel
changes in swimming depth (C). Dashed lines indicate the 95% confidence interval around each smooth
term. Y-axis represents the standardized residuals.

doi:10.1371/journal.pone.0127807.g002
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experiments), in terrestrial endotherms (range 0.8–70 kg) an increase in ODBA of 0.2 g (the
range seen in reef sharks) caused oxygen consumption to almost double [28]. While we certain-
ly cannot extrapolate that result to sharks, it does suggest the diel rhythms in ODBA we ob-
served were biologically meaningful. We assume these peaks in activity are related to foraging
but we acknowledge that other behaviours such as predator avoidance may be responsible [34].

Why did sharks select this time period for maximal activity? Many predators have vision
well suited to nocturnal conditions which gives them an advantage over their prey during low
light periods. This is also true for sharks, which possess a reflective layer of cells (the tapetum
lucidum) behind the retina, improving vision under low-light conditions [35]. In some active
terrestrial carnivores (e.g. cheetahs), nocturnal activity is positively correlated with moonlight
levels, as the predator is more likely to see and locate prey during brighter nights [36]. We
found that blacktip reef sharks also increased activity during periods of high moon illumination
(full moon), but this increase was also seen during periods of very low levels of moon illumina-
tion (new moon). It is more likely that these peaks in activity were related to tidal cycles rather
than levels of illumination (see below).

Tidal cycles have been shown to influence movement and presumably behaviour of many
shark and teleost species (e.g. [22, 23, 37, 38]). Ebbing high tides will force smaller fishes and
other prey off the sandflats, which will likely increase the shark’s foraging success. Previous ac-
tive tracking of blacktip reef sharks at Palmyra demonstrated that individuals maintained rela-
tively small home ranges within which they patrolled sand-flat ledges, likely enabling them to
intercept prey leaving the flats [23]. Finally, there can also be significant changes in water tem-
perature associated with changing tides, so thermal effects may also play a role (see below,
[23]). When taken together, it appears that blacktip reef shark activity is primarily driven by
diel period and secondarily by tidal state.

While improved foraging may explain nocturnal and tidal activity, it still does not explain
why the peak was highest in the early evening. Small fishes may compete for shelter at dusk

Table 2. GAMM results showing effects of time of day, tides or lunar cycle on body temperature, acceleration and swimming depth (from teleme-
try), and ODBA and gastric motility (from data-loggers).

Model and terms x n Smoother Degrees of freedom F-statistic P r2

Body temperature (telemetry) 4 0.09

s(Hour) cyclic 7.15 32.14 <0.001

Gastric motility (data-logger) 1 0.05

s(Hour) cyclic 6.20 18.82 <0.001

Acceleration (telemetry) 6 0.13

s(Hour) cyclic 4.45 13.97 <0.001

s(Lunar fraction illuminated) cyclic 5.00 7.83 <0.001

factor(Month) — — — <0.001

Depth (telemetry) 6 0.16

s(Hour) cyclic 7.65 42.39 <0.001

ln ODBA (data-logger) 4 0.08

s(Time of Day*) cyclic 6.80 25.45 <0.001

s(Tide) cubic 6.86 18.14 <0.001

s(Ambient Temperature) cubic 5.57 5.57 <0.001

s(Depth) cubic 6.30 6.30 <0.001

Only significant effects are shown for models with the lowest AIC and BIC values. Models differed by > 2 AIC units from the next possible model to be

selected. Results are for all individuals combined.

doi:10.1371/journal.pone.0127807.t002
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Fig 3. Effects of time of day on predator and prey activity. A) GAMM results for changes in Overall
Dynamic Body Acceleration (ODBA) as a function of time of day; water temperature (from the data-loggers)
has been overlaid (blue points). B) GAM results for change in gastric motility as a function of time of day from
a single blacktip reef shark. Dashed lines indicate the 95% confidence interval around each smooth term. Y-
axis represents the standardized residuals. C) Foraging rates for three species of herbivorous reef fish, from
Palmyra’s backreefs (Acanthurus lineatus, A. nigricans, Ctenochaetus striatus). A quadratic regression has
been fit to the bite rate data (with 95% confidence intervals shown in red).

doi:10.1371/journal.pone.0127807.g003
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with some individuals forced to the outer boundaries of coral heads and other structures [3].
The consumption of these individuals leads to the crepuscular peak in foraging seen in sit and
wait predators. However, Holbrook and Schmitt [3] observed no crepuscular peak in activity
for roaming predators such as trevally, which we might expect to be more similar in behaviour
to the obligate swimming reef sharks studied here. Also, in blacktip reef sharks the peak in ac-
tivity occurred just after dusk sometimes during periods of complete darkness.

Our predictions regarding the relationship between temperature and activity were only par-
tially supported. While sharks were least active while at their warmest, they were also most ac-
tive while body temperatures were warm, but cooling. Are peaks in activity related to cooling
body temperatures, and if so why? Diel changes in body temperatures in blacktip reef sharks
were on average 2.4°C (but up to 2.7°C), and most sharks have a Q10 of 2.5–3.0 (i.e. metabolic
rates increase by a factor of 2.5–3 for every 10°C increase in body temperature), so metabolic
rates would vary by at least ± 60% [39]. While predators can be more active when their body

Fig 4. Images from video camera attached to a blacktip reef shark. Footage was taken during low tide in the morning and shows the shark using sandflat
and inner backreef habitats (A), closely following another blacktip while a giant trevally (Caranx ignobilis) investigates (B), and frequently swimming up into
school of mullet (Mugil cephalus, C).

doi:10.1371/journal.pone.0127807.g004
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temperatures are high, the same applies to their prey [8, 9]. Indeed, escape behaviour has a
greater scaling coefficient with temperature than attack rates, as prey have more to lose (i.e.
their life) from a predator-prey interaction [9]. The herbivorous fishes at Palmyra show a peak
in foraging activity when temperatures are highest. Such behaviour is common in tropical her-
bivorous fishes and may be due to the effects of temperature on metabolic and digestive rates
and/or the effect of time on day on nutrient content of algae (which increases throughout the
day, e.g. [40]). However, smaller fishes will also have lower thermal inertia and their body tem-
peratures will decrease at a faster rate. Leopard sharks (Triakis semifasciata), which are similar-
ly sized to blacktip reef sharks, have thermal body coefficients (rate of change of body
temperature) of 0.0051 ± 0.001°C/min [41]. Through thermal inertia alone, shark body tem-
peratures will take several hours to decrease. Even after an hour of cooling, sharks will still have
relatively high body temperatures, while over the same time period the temperature of their
smaller prey will have returned to daily low values. Hence, predator behaviour may aim to
maximize foraging success based on both prey behaviour and the physiological processes that
can influence behaviour of prey (i.e. metabolic rates). Further evidence that body temperature
may partially drive the evening peak in activity in sharks is provided by the individuals that

Fig 5. Diel changes in activity (ODBA, red line), water temperature (blue line) and swimming depth (black line) in blacktip reef sharks # 9 (A) and #
10 (B). Data are 30 minute running averages. Crepuscular periods are shaded. Note the absence of an activity peak during days without peaks in
ambient temperature.

doi:10.1371/journal.pone.0127807.g005
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showed a reduced (or absent) activity peak on days when there was little temperature variabili-
ty (i.e. there would be minimal cooling of body temperatures). While we cannot definitively
show that cooling body temperatures drive peaks in activity, we can confirm that shark behav-
iour did not conform to simple ‘hunt warm, rest cold’ or ‘hunt cold, rest warm’ routines. In-
stead, the sharks appear to be ‘hunting and resting warm’, but they do not hunt at their
warmest.

Digestion is also an energetically expensive process, and can continue for many hours or
even days after feeding [16]. Although measurements were taken from a single animal, this is
the first measurement of real-time changes in the state of digestion in a free-ranging fish. Cap-
tive experiments have shown gastric motility in blacktip reef sharks to be positively correlated
with body temperature, regardless of feeding [25]. Feeding actually induces a delay in gastric
contractions that can last 7–12 h (‘gastric accommodation’, [25]). The small morning peak ob-
served here in the field may represent the end of the gastric accommodation phase, with motili-
ty levels increasing throughout the day as the body warms. Increased levels of gastric motility
will likely increase gastric evacuation rates, allowing a faster return of appetite [15]. Hence,
sharks may warm up during the day to increase rates of digestion and subsequent feeding rates
[14]. The lag between the peaks in gastric motility and activity may represent a compromise be-
tween two energetically expensive processes: being active and digesting (similar to diving and
digestion in seabirds, [30]). Similarly, eels show reduced activity during periods of increased
metabolic rates associated with digestion [17]. Therefore, our hypothesis that sharks are least
active while digesting is supported, and this appears to occur when the animals are at their
warmest. However, the gastric data presented here is from a single shark and acceleration and
digestion data were not taken from the same individual, so more work will need to be done in
this area as it may represent a fruitful area of research.

While sharks may tailor their behaviour to diel changes in body temperature, it remains dif-
ficult to determine if they actively behaviourally thermoregulate. Excursions onto very shallow
sandflats during low tide in the daytime caused ambient temperatures to increase by 1–4°C.
We did not record temperature within specific habitats; only the water temperature experi-
enced by the sharks, so cannot confirm active thermoregulation. However, video footage and
depth sensors confirmed that sharks were swimming very close to the surface and in some
cases were directly exposed to sunlight, which should also increase body warming. Female
blacktip reef sharks in Australia and juvenile lemon sharks within a Bahamian nursery also ap-
pear to actively thermoregulate, selecting thermal habitats to increase body temperatures dur-
ing the afternoon [24, 42].

There could be other reasons why sharks select shallow habitats during periods of low tide.
They may still be thermoregulating, but for reasons associated with reproduction and gestation.
Pregnant female sharks are known to aggregate and select warm shallow water during the after-
noons to increase body temperature, potentially reducing gestation time of pups [24, 41]. We
only tagged mature female sharks, but they did not appear to be pregnant and no shallow water
aggregations are seen at Palmyra. While reproductive state (e.g. pregnancy) could explain ther-
moregulation, it would not explain the evening peaks in activity.

As predicted by recent foraging models, even sharks that swim continuously show beha-
vioural routines with peaks in activity followed by ‘resting’ periods [1]. Selecting when this
peak in activity occurs will be of critical importance for the fitness of the animal. While we
clearly show when sharks choose to be most active, disentangling the contributing factors is dif-
ficult and several of these factors may not be mutually exclusive. For example, sharks may dem-
onstrate crepuscular peaks because these represent a period when light levels are lower, but
body temperatures are still elevated but cooling. However, our results do suggest that blacktip
sharks at Palmyra attempt to maximize ingestion rates over efficiency of energy use. ‘Active
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while cooling’may be a more common behaviour than previously recognized for ectothermic
marine predators in tropical environments [2].

The implications of predator activity patterns and the effects of temperature on predator-
prey relationships are profound as these will flow from the individual to the population and are
critical to interpreting or predicting the impacts of climate change [8, 43]. The loss of large
predators at tropical islands is believed to cause a switch in diel behaviour of prey fishes (i.e.,
nocturnal species become diurnal) related to the predators activity patterns [18]. High-resolu-
tion measurements of predator and prey activity are required to advance and test these ideas.
Ultimately, we must determine how factors such as hunting success, physiological perfor-
mance, and social associations guide the myriad of decisions animals make and how tempera-
ture may influence them.
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