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Abstract

Atlantic horse mackerel (Trachurus trachurus, Linnaeus, 1758) is a highly exploited

species, common throughout the North-East Atlantic. As a pelagic-neritic fish it typi-

cally occurs over the shelf from the surface to 200 m deep on sandy bottoms. Most

research has focused on distributions of adults or early life stages (eggs and larvae)

of this species in offshore waters and only a few studies have reported the occur-

rence of early stages near the coast. However, these nearshore environments might

be important for the early growth and survival of the Atlantic horse mackerel. In

addition, little is known on how environmental processes might affect the early

stages of this species. Here, we monitored weekly recruitment of horse mackerel to

artificial substrates (SMURFS) deployed near the coast at both the surface and near

the bottom, and back-calculated hatching cohorts. The relationship of both recruit-

ment and hatching patterns with environmental factors was investigated. From a

total of 2,515 fish, 2,490 (99%) recruited to surface SMURFS. A GAM and GAMM

analysis of the recruitment and hatching patterns, respectively, revealed a strong

relationship with the lunar cycle and upwelling. Both recruitment and hatching

showed lunar periodicity, with peaks near the new moon and revealed to be influ-

enced negatively by upwelling. This study suggests that the nearshore environment

might be an important nursery area for post-larval and early juvenile Atlantic horse

mackerel.
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1 | INTRODUCTION

Marine fish can have highly variable recruitment patterns, which can

strongly affect population dynamics (reviewed by e.g., Cury & Roy,

1989; Pepin & Myers, 1991; Doherty, 2002; Carr & Syms, 2006).

Various interacting biotic and abiotic processes at multiple scales can

cause this variability. Abiotic factors include, for example, sea surface

temperature (SST; Daskalov, 1999; Jenkins & King, 2006), upper

ocean stability (including wind and current speeds and direction or

tides; Roy, Cury, Fontana, & Belv�eze, 1989; Milicich, 1994; Caselle,

Kinlan, & Warner, 2010), nutrient availability (Caselle, Carr, Malone,

Wilson, & Wendt, 2010; Meekan, Carleton, McKinnon, Flynn, & Fur-

nas, 2003), or the lunar phase (Sponaugle & Cowen, 1994; Victor,

1982).

Atlantic horse mackerel (Trachurus trachurus, Linnaeus, 1758) is a

highly exploited species common throughout the North-East Atlantic,

from the Norwegian Fjords to South Africa (Lockwood & Johnson,

1977; Smith-Vanith, 1986). In 2015, 137,304 tonnes of this species

were captured by the European fishing industry (FAO, 2017). In Por-

tugal, it was the second most important marine fish species in 2015

in terms of landed biomass. Given its economic importance, this spe-

cies has been the subject of intensive research (e.g., Abaunza et al.,
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2008; Macer, 1977; Smith-Vanith, 1986) revealing its pelagic-neritic

distribution, typically occurring over the shelf from the surface to

200 m depth over sandy bottoms. Most research has focused on

deeper offshore waters and adult phases, with few exceptions that

measured larvae and egg distribution (e.g., Berenbeim, 1974; Farinha

& Borges, 1994; Farinha & Lopes, 1996). There is evidence that eggs

and larvae concentrate near the shelf-edge (Farinha & Borges, 1994;

Farinha & Lopes, 1996), and that immature fish can be distributed

over the shelf closer to the coast, at least in Southwest Portugal

(Borges & Gordo, 1991).

Despite the general absence of studies focusing on nearshore

occurrence, larvae and early stages of Trachurus species have been

observed several times in nearshore rocky reefs at the Arr�abida Mar-

ine Park (Portugal) (Beldade, Borges, & Gonc�alves, 2006; Borges,

Ben-Hamadou, Ch�ıcharo, R�e, & Gonc�alves, 2007; Borges, Vaz,

Serr~ao, & Gonc�alves, 2009), indicating the potential importance of

this area to the early life of this pelagic fish.

Additionally, little is known on how environmental processes

might affect early life stages of Atlantic horse mackerel (Trenkel

et al., 2014). The few published studies found (i) no significant corre-

lation between larval abundance and SST in the Celtic Sea (Fives

et al., 2001), (ii) a negative correlation between upwelling during the

winter spawning season and the yearly recruitment to the fishery in

Portugal (Santos, Borges, & Groom, 2001) and (iii) a positive relation-

ship between lower coastal SST (indicating upwelling and mild

weather patterns) during spring and summer and higher annual

recruitment in the whole Iberian Peninsula (Lav�ın, Moreno-Ventas,

Ortiz de Z�arate, Abaunza, & Cabanas, 2007).

Atlantic horse mackerel recruitment (i.e., the transition from the

larval to the juvenile stage) has not yet been directly investigated, as

previous studies used an annual estimate of the number of recruits

entering the fishery as a proxy for recruitment. The present study

addresses this knowledge gap by aiming to: (i) measure the occur-

rence and recruitment patterns of Atlantic horse mackerel at small

temporal (weekly) resolution nearshore and (ii) investigate the impact

of environmental processes on recruitment and hatching patterns.

2 | MATERIALS AND METHODS

2.1 | Sampling

Sampling sites were located at the Arr�abida Marine Park (hereafter

AMP) in central Portugal (Figure 1), which is part of the Western

Iberian upwelling ecosystem, a wind-driven eastern boundary upwel-

ling system (Cunha, 1993; Fi�uza, Macedo, & Guerreiro, 1982; Moita,

2003; Wooster, Bakun, & McLain, 1976). A southern oriented steep

coast protects the AMP from prevailing northerly and north-westerly

winds and waves (Beldade, Erzini, & Gonc�alves, 2006), allowing fre-

quent sampling in the nearshore areas.

In this study, recruitment refers to the arrival of fish to the near-

shore and the approximately concurrent metamorphosis to the juve-

nile stage. Given that juvenile Atlantic horse mackerel show

thigmotactic behaviour (Deudero, Merella, Morales-Nin, Massut�ı, &

Alemany, 1999; Massut�ı, Morales-Nin, & Deudero, 1999), standard

monitoring units for recruitment of fish (SMURFs; Ammann, 2004;

Wilson, Broitman, Caselle, & Wendt, 2008) were used here to moni-

tor nearshore aggregation of this pelagic species. SMURFs can suc-

cessfully sample ready-to-settle fish in the nearshore (Caselle, Kinlan

et al., 2010; Tavernetti, Morgan, & Yu, 2009; White & Caselle,

2008). SMURFs were made out of a cylindrical frame of green gar-

dening fence (1.0 9 0.35 m diameter) and filled with plastic fencing

to imitate algae, as applied in several recruitment studies in Califor-

nia (Ammann, 2004; Caselle, Carr et al., 2010; Wilson, Broitman,

Caselle, & Wendt, 2008). These collectors were deployed in two

bays with similar rocky reef habitat, within the fully protected area

of the AMP (Figure 1). The sampling sites A (38°26045.35″N,

9°2018.44″W) and B (38°26057.68″N, 9°1019.09″W) were located

approximately 1.5 km apart and around 100 m seaward from the

nearest reef (Figure 1).

In each site, three mooring lines were deployed from a small

boat over sandy bottom at a water depth of around 12 m in site A

and 15 m in site B. On each line, two SMURFS were attached, one

just below the surface (1–3.5 m depending on the tide) and one

close (~40 cm) to the bottom, resulting in a total of 6 replicate

SMURFs per site (Figure S1 for further details). Sampling was per-

formed weekly from the 29th of June till the 27th of September in

2011, comprising 14 weeks of sampling. SMURFs were collected by

two scuba divers using a benthic ichthyofaunal net for coral/kelp

environments (BINCKE net; Anderson & Carr, 1998; Ammann,

2004). Once onboard, SMURFs were cleared over the net with

repeated washings and the sample was transferred first to a bucket

and then into a sieve before being preserved in 80% ethanol. In the

laboratory, after sorting and species identification, total (TL) and

standard length (SL) were measured to the nearest 0.01 cm. A sub-

sample of 297 fish was aged from sagittal otolith analysis to build a

length-age relationship, well described by the Gompertz growth

function (R2 = .72; see Van Beveren, Klein, Serr~ao, Gonc�alves, &

Borges, 2016 for further details on the otolith data analysis). This

function was then used to back-calculate dates of hatching.

2.2 | Environmental factors

For the time period between the earliest back-calculated hatching

date (10 May 2011) and the end of the sampling period (27 Septem-

ber 2011; Figures 2a,b), daily data were compiled for the study area

(Figure 1) for the following environmental parameters: sea surface

temperature (SST), concentration of Chlorophyll a (Chla), eastward

and northward current velocity (U- and V component, respectively),

wind speed and direction, upwelling, moon phase and tidal amplitude

(Table 1). For daily raster data (SST, Chla and currents), a daily aver-

age was calculated for the study region (Figure 1; extent: �9.25,

�8.50, 38.50, 38.35). Hourly wind speed and direction data was aver-

aged per day. The upwelling index was calculated as the difference

between offshore SST measured from an offshore area of similar size

located two degrees further offshore at the same latitude and the

SST in the sampling area (Santos et al., 2001; Relvas et al., 2009).
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Positive values indicate upwelling conditions and negative values

describe relaxation from upwelling. For the model analysis lunar illu-

mination was categorized in order to distinguish between first and

third quarter moon: full moon (75%–100%), new moon (0%–25%) and

first and third quarter moon shared 25%–75% illumination. In this

study site, each lunar cycle included two tidal cycles, with spring tides

occurring on the same day, or 1 day after full and new moon.

2.3 | Data analyses

Bottom SMURFs collected very few fish (0.99% of the total catch)

and therefore only data from surface SMURFs were analysed. Fish

sampled with a SL < 25 mm (Figure S2; Van Beveren et al., 2016)

were considered recruits and selected for data analysis. A Kruskal–

Wallis test was used to compare the non-normally distributed

F IGURE 1 Map of the study site (Arr�abida Marine Park) on the top, with indications of the protection zones, the two sampling sites A and
B, and the area (dashed frame) for which satellite data of environmental parameters was averaged and a detailed satellite image of the
sampling area on the bottom. Country maps were provided by the Portuguese Institute of Hydrography and the satellite image by Google
Earth
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abundance of recruits among SMURF replicates in each site. A Wil-

coxon rank sum test was used for site (A, B) comparisons. To analyse

the weekly recruitment patterns as a function of daily environmental

parameters, the latter were averaged over the 7 days preceding sam-

pling, to capture the environmental conditions during the time over

which fish arrived to SMURFs (due to the weekly nature of sam-

pling).

Data exploration of the explanatory variables was performed by

following the protocol of Zuur, Ieno, and Elphick (2010). Both a mul-

tiple pairwise scatterplot with Pearson correlation and a Variance

Inflation Factor (VIF) analysis was used to test for collinearity and to

choose which explanatory variables were included in the models

(Zuur et al., 2010). A Pearson correlation of R2 = .6 was used as a

threshold. Accordingly, wind variables were correlated with current

components, which were highly correlated between each other and

CHLa was correlated with the upwelling index. The modelling

included as continuous variables, SST and the upwelling index and U

current, due to their higher correlation with the response variables

compared to the wind variables. Selected categorical variables were

moon phase, site (only in recruitment models) and hatching cohort

(only in hatching models).

A generalized additive model (GAM) was used on the recruitment

and hatching data. Since an auto-correlation analysis (ACF) performed

on the model residuals revealed temporal dependence of the hatching

time series, a generalized additive mixed model (GAMM; Wood, 2006;

Zuur, Ieno, Walker, Saveliev, & Smith, 2009) was used here. A depen-

dence structure was included to the GAMM by using the factor hatch-

ing cohort as a random intercept. Models were set up using a

negative-binomial error structure and a log link function (Wood,

2006). The Akaike Information Criterion (AIC) and a graphical valida-

tion of model residuals were used to select the best model (Zuur et al.,

2009). The data exploration and all statistical analyses were carried

out with R (version 3.1.0; R-Core-Team, 2009) and test results were

evaluated at the p < .05 level. The GAM and GAMM models were

analysed using the mgcv library (version 1.8–1; Wood, 2011) in R.

3 | RESULTS

A total of 2490 Atlantic horse mackerel were collected with surface

SMURFs. Standard length ranged from 6.1 mm to 48.56 (mean

SD = 15.5 mm; Figure S2) and 2,126 out of 2,209 measurable fish

were post-larvae and/or recruits (96.2%; 6.1 mm–25.0 mm SL). Fish

morphology ranged from late stage larvae to juvenile (Di Padoa, 1956;

Russell, 1976). In several weekly samples, the great majority of fish

aggregated to just one or two of the six surface SMURFs, but no spa-

tial preference was detected (Figure S3). Abundance of recruits was

not significantly different among replicate SMURFs within sites A and

B (Kruskal–Wallis test, v2 = 0.38, p value = n.s., n = 42 and v2 = 1.99,

p value = n.s., n = 42, respectively), or between the two sites (Wil-

coxon rank sum test,W = 893, p value = n.s., n = 84).

Fish recruited every week at both sites but the majority of

recruitment (72%) occurred during the first two sampling weeks

F IGURE 2 (a) Weekly averaged recruit abundance of
T. trachurus (log-transformed with untransformed numbers on
peaks); estimated daily hatching intensity (b: with dashed lines
separating hatching cohorts and circles indicate lunar phase; full
moon, white; new moon, black); daily time series of the upwelling
index (c), SST (d), CHLa concentration (e) surface currents (f) and
wind (g). See Table 1 for more details on units and source of
environmental variables
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(Figure 2a). Despite a sharp decrease in recruitment after the first

2 weeks, three smaller peaks were observed at the beginning and

end of August and at the end of September (Figure 2a). Standard

length of fish collected during recruitment peaks was very similar,

but on subsequent weeks, off-peak samples tended to have older

and larger fish (Figure 3). Sampling dates during which the collected

fish were generally smaller (samples with lowest median and smaller

variability of SL) likely indicate the arrival of a new recruitment

group. Accordingly, four recruitment groups were identified during

the sampling period (Figure 3).

Estimated back-calculated hatching dates of recruits occurred

from 10 May through 3 September, with a decrease in hatching fre-

quency over time (Figure 2b). Three clear hatching cohorts (i.e.,

peaks separated by days on which no or only few hatching occurred)

were detected, with a fourth one that was less distinct and had few

individuals (Figure 2b). Overall, SL of recruits decreased from the

first to the fourth hatching cohort, with fish hatched in the first

cohort recruiting at significantly larger sizes than fish from the third

cohort (v2 = 23.85; df = 3; p < .0001; n = 2,126; post-hoc: first ver-

sus third cohort: v2 = 5.94; p < .001; Figure 4). Fish belonging to

different recruitment groups could have hatched within the same

hatching cohort (Figure 5) and, inversely fish from the same recruit-

ment group could belong to different hatching cohorts.

The sampling encompassed four tidal cycles, while during the

estimated hatching period five tidal cycles occurred (Figures 2a,b).

The tidal range extended from 1 m to 3.5 m. From the beginning of

sampling through early June, the upwelling index was around or

below 0, indicating a period of respectively relaxation or down-

welling (Figure 2c). From early June onwards, the upwelling index

steadily increased. Prior to early June, SST increased from approxi-

mately 17–20°C, then decreased to 16°C by the end of July and

increased again, stabilizing around 19°C until the end of the sampling

period (Figure 2d). CHLa peaked similarly to the upwelling index in

mid July and mid September (Figure 2e). A similar temporal pattern

as for SST was observed for the surface currents in the marine park,

as from the start of June currents changed from less stable

conditions including days with northward currents, to almost exclu-

sively south and south-eastward currents (Figure 2f).

After a stepwise forward and backward selection process, the

GAM model containing the factor moon phase, and variables upwel-

ling (UP_INDEX) and U current component (U) as smoothing func-

tions was the one with the lowest AIC (523.1) and explained the

largest part of the deviance in recruitment of T. trachurus (71.7%;

Table 2). No strong residual pattern was observed and no autocorre-

lation was detected (Figure S4a,b). Adding factor SITE lowered the

fit of the model and the factor was also not significant.

Lunar phase had a strong influence on the recruitment of Atlan-

tic horse mackerel, with higher numbers of recruits collected after

the third quarter and new moon phases (Figures 2a and 6a). Results

of the smoothed variables indicated that recruitment decreased with

TABLE 1 Environmental variables

Variable Unit Spa. res. Temp. res. Type Dataset/Source Reference

SST °C ~6 km Daily RS + DO Copernicus Marine environment

monitoring service

(marine.copernicus.eu)

OSTIAa; Donlon et al. (2012)

CHLa mg/m3 ~4 km Daily RS Gohin et al. (2008)

U and V current m/s ~3 km Daily MO IBIb; Sotillo et al. (2015)

Wind speed m/s NA Hourly DO Local weather station NA

Wind direction ° NA Hourly NA

Moon phase % NA Daily MO Portuguese calendar NA

Tidal amplitude m NA Daily MO Hydrographic Institute NA

Listed are the unit, original spatial and temporal resolution (Spa. and Temp. res., respectively), the type (RS, remote sensing; DO, direct observation;

MO, model), source and reference of the dataset.
aOperational Sea Surface Temperature and Sea Ice Analysis (OSTIA) run by the UK Met Office combines remote sensed satellite data provided by the

GHRSST project with in situ observations, to determine through an Optimal Interpolation procedure global daily sea surface temperature (SST; Donlon

et al., 2012).
bIBI (Iberian Biscay Irish) Ocean Analysis and Forecasting system run by Puertos del Estado and Mercator Ocean is based on an eddy-resolving NEMO

model application driven by meteorological and oceanographic forcing (Madec, 2008; Sotillo et al., 2007, 2015).

F IGURE 3 Length distribution of weekly sampled recruits. Stars
indicate weeks of peak recruitment and dashed lines separate
recruitment groups
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increasing upwelling index (Figure 7a). Recruitment decreased with

decreasing east-west current component (U) and was higher at posi-

tive values (Figure 7b).

The optimal combination of environmental variables for the

hatching pattern models included moon phase, hatching cohort,

upwelling index (UP_INDEX) and SST with a smoothing function

(Table 2). Including the factor cohort as a random effect lead to a

much better fit than the model without this dependence structure

(AIC = 284.1 vs. AIC = 292.4; likelihood ratio test: p < .005; Table 2)

and eliminated the residual autocorrelation (Figure S5 D vs. B). No

clear patterns were observed when plotting model residuals against

fitted values and against environmental variables.

Most of the recruited fish hatched during third quarter and new

moon periods (Figures 2b and 6b). The hatching abundance was neg-

atively related to the upwelling index (Figure 7c). A non-linear rela-

tionship was found between SST and hatching (Figure 7d).

4 | DISCUSSION

This study recorded for the first time recruitment of post-larval and

early juvenile Atlantic horse mackerel to the nearshore (~100 m off-

shore), suggesting that this species is using shallow water rocky reefs

as nursery areas. The detection of such behaviour is innovative,

given that high larvae and egg abundances of this species were usu-

ally detected above the shelf edge (�Alvarez et al., 2012; Farinha &

Borges, 1994; Farinha & Lopes, 1996; Fives et al., 2001) and

because only few studies have occasionally noted the occurrence of

newly hatched larvae in the nearshore (Borges, Beldade, &

Gonc�alves, 2007; Borges, Ben-Hamadou et al., 2007; Sabat�es,

Zabala, & Garc�ıa-Rubies, 2003). Our results indicate that Atlantic

horse mackerel utilises the nearshore during their early growth per-

iod and clearly associates with floating structures. A thigmotactic

behaviour has also been observed for other carangid species (e.g.,

Dempster & Kingsford, 2004; Masuda & Tsukamoto, 2000; Masuda,

Yamashita, & Matsuyama, 2008), and, in particular, for Atlantic horse

mackerel in the Mediterranean by Deudero et al. (1999) and Massut�ı

et al. (1999), who studied the functioning of fish aggregating devices

(FADs). In contrast to our study, FADs were installed further off-

shore (4–7 nautical miles) and had only sampled Atlantic horse mack-

erel larger than 36 mm (average fork length = 64 mm). This might

indicate that post-larval and early juvenile stages may use the near-

shore as a nursery area before moving to deeper waters, their main

adult habitat (Borges & Gordo, 1991; Lloris & Moreno, 1995; Sousa,

Azevedo, & Gomes, 2005).

We show that T. trachurus have a clear depth preference, as

99% of individuals aggregated in surface collectors. This confirms

previous studies on vertical distribution which recorded eggs and lar-

vae predominantly at the surface (Berenbeim, 1974; Southward &

Barrett, 1983; Coombs, Conway, & Halliday, 1996; Borges, Beldade

et al., 2007). Our results also indicate that Atlantic horse mackerel

forms schools during the larval and post-larval phase, consisting of

different size and age individuals which had likely hatched on differ-

ent days. Therefore, the pelagic larval duration (PLD) might be vari-

able in this species. These schools are assumed to be distributed

patchily as the number of recruits varied largely among SMURFs

without any clear pattern, and no significant relationship between

sampling site and recruitment intensity. Possible reasons could be

variation in small-scale flow patterns (Breitburg et al., 1995) and

sweepstake recruitment (e.g., Moberg & Burton, 2000; Selkoe,

Gaines, Caselle, & Warner, 2006), but to clarify this further, oceano-

graphic and genetic analysis would be needed.

The strong decrease in recruit abundance over the sampling per-

iod can be hypothesized to be associated with the end of the

spawning season, but in this region this is known to extend to the

summer and autumn (Arruda, 1984; Barraca, 1964; Borges, Dinis, &

Monteiro, 1977; Borges & Gordo, 1991). The decrease and weekly

variability in recruit abundance might also be caused by variability in

oceanographic conditions affecting larval survival and dispersal.

Other factors contributing to larval natural mortality, such as preda-

tion pressure, starvation and disease or maternal effects, have not

been analysed in this study and are not discussed here.

Despite differences in abundance, recruitment peaks followed a

clear cyclic pattern with a roughly monthly periodicity corresponding

to a lunar pattern. Most fish recruited during the waning (third quar-

ter) and new moon periods. For many fish species, lunar periodicity

F IGURE 4 Length distribution of recruits for each hatching
cohort

F IGURE 5 Hatching period of recruitment groups; areas are
scale-independent
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in recruitment has been established. Moreover, the type of moon

phase influencing recruitment (e.g., full, new, quarter moons) is spe-

cies-specific and likely context-dependent depending on tidal flow

and light levels. Two potential explanations for lunar recruitment

patterns have been proposed; predator avoidance theory, and the

other related with reef sound. Predator avoidance due to low light

levels has been documented (Robertson, Green, & Victor, 1988;

Sponaugle & Cowen, 1994) and although not tested here, it could

explain the higher recruit abundances recorded, from the third quar-

ter phase onwards, when both moon illumination and the time when

the moon is visible over the horizon progressively decrease, until a

minimum light is reached during new moon. A second, new area of

research which is still in its infancy, is reef soundscape. Maximal

sound intensity created by biological processes occurs during new

moon in both tropical (Staaterman et al., 2014) and temperate reefs

(Radford, Jeffs, Tindle, & Montgomery, 2008), which might increase

the ability of fish to detect and to orient to reefs.

The hatching pattern of those fish that survived the larval phase

and recruited to SMURFS showed a clear lunar cycle with distinct

TABLE 2 Model results of the GAM of the recruitment data and of the GAMM of the hatching data with and without random effect

Data Model type Dev. expl. r2 adj. AIC log Lik. (df) Predictors df/edf v2/F p

Recruitment GAM 71.7 0.46 523.08 248.41 (13.13) fMOON 3.00 19.6 <.001

UP_INDEX 3.41 41.4 <.001

U 3.99 34.4 <.001

Hatching GAMM – 0.75 295.21 �138.6 (9) fMOON 3.00 13.3 <.001

UP_INDEX 1.00 168.0 <.001

SST 3.75 12.8 <.001

Hatching GAMM with random effect – 0.40 284.14 �132.07 (10) fMOON 3.00 17.9 <.001

UP_INDEX 1 13.5 <.001

SST 6.41 7.0 <.001

The following information is provided for each model: Dev. expl., explained deviance; r2 adj., adjusted r2; AIC, Akaike Information Criterion. For each

predictor factor moon phase (fMOON), upwelling index (UP_INDEX), U current component (U) and SST are listed: degrees of freedom (df) or effective

degrees of freedom (edf) for smoothed variables, Chi-square statistics (v2) for GAM and F statistics for GAMM models (F), and significance value (p).

F IGURE 6 Mean recruit abundance (a) and mean hatching
intensity (b) at each moon phase; error bars indicate SE

F IGURE 7 Estimated smoothing curves and 95% confidence
bands (dashed lines), illustrating the influence of upwelling (a) and U
current component (b) on recruit abundance and upwelling (c) and
SST (d) on hatching intensity
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hatching cohorts. A lunar spawning pattern around new and full

moon has also been described for other carangid species such as

Trachurus declivis (Jordan, 1994), Caranx melampygus, Caranx ignobilis

(Johannes, 1978), and only around full moon for Caranx mate and

Carangoides fulvoguttatus (Johannes, 1978). Nevertheless, all of these

species, with the exception of T. declivis, are carangids with tropical

and nearshore distributions. Spawning around a specific moon phase

might facilitate the aggregation of fish and increase the fertilization

success (Graham & Castellanos, 2005; Johannes, 1978; Whaylen,

Pattengill-Semmens, Semmens, Bush, & Boardman, 2004).

In addition to a lunar pattern, upwelling was negatively corre-

lated to recruitment and hatching. This supports the study of

Santos et al. (2001), which revealed a negative correlation

between upwelling and the overall yearly recruitment of the

Atlantic horse mackerel to the fishery in Portugal. In our study,

when summer upwelling intensified, hatching decreased rapidly,

but this result can also indicate that fewer individuals survived

the pelagic larval phase. Although the upwelling index was found

to be highly positively correlated with CHLa concentration, the

negative correlation of both hatching and recruitment with

upwelling could be driven by upwelling generated turbulence and

offshore advection (Fi�uza et al., 1982; Rossi et al., 2013) in spite

of an increase of phyto- and zooplankton production (Cunha,

1993; Moita, 2003).

Intensified offshore advection of surface water (offshore Ekman

transport; Relvas et al., 2007) can transport larval fish offshore

(Rodr�ıguez, Barton, Hern�andez-Le�on, & Ar�ıstegui, 2004; Rodr�ıguez

et al., 1999; Rodr�ıguez, Hern�andez-Le�on, & Barton, 1999) and

potentially increase larval mortality (Bakun & Parrish, 1980; Parrish,

Bakun, Husby, & Nelson, 1983). This could partially explain the

decrease of recruitment, as the majority of fish recruiting after the

first peak had hatched during upwelling conditions. Indeed, in our

study stronger south and south-eastward (i.e., offshore) currents

occurred when upwelling started.

Earlier studies on other pelagic fish species, suggested that they

have developed a reproductive strategy that benefits from upwelling

patterns (Bakun, 1996; Cubillos, Arcos, Bucarey, & Canales, 2001;

Cury & Roy, 1989; Cushing, 1974; Lasker, 1978; Roy et al., 1989).

Future studies should explore this hypothesis for Atlantic horse

mackerel.

Fish collected in weeks following each of the four observed

recruitment peaks were larger and older than fish that settled dur-

ing peaks. This could be due to several reasons: (i) these fish

belonged to the previous recruitment pulse of fish arriving to the

nearshore, and kept growing locally; (ii) they have spent more

time offshore before arriving to the nearshore, i.e., delayed

recruitment, or (iii) all fish might have arrived to the nearshore at

the same time, but some delayed their arrival to the SMURFs.

The ability to delay recruitment is known for reef fish species

(e.g., Cowen, 1991; McCormick, 1999; Victor, 2007). In general,

when comparing hatching cohorts, the size of recruits decreased

over the sampling period. Additionally, fish of the first hatching

cohort had a higher growth rate than fish of the following cohorts

(Van Beveren et al., 2016). We hypothesise that environmental

conditions prevailing during larval growth might have caused these

differences. The first cohort developed during a period of down-

welling conditions and at the start of upwelling, whereas fish of

the later cohorts grew only during increasing upwelling conditions

with increasing CHLa concentration. On average, the temperature

was higher during the larval growth of the first cohort than for

the other cohorts and this might have led to a faster larval

growth and to a larger size at recruitment of the first cohort

(McCormick & Molony, 1995; Sponaugle, Grorud-Colvert, & Pin-

kard, 2006; Takahashi & Watanabe, 2004). Meekan et al. (2003)

observed that larval growth was higher during absence of upwel-

ling, when water temperatures were higher and prey abundance

lower, concluding that temperature was more important for larval

growth than prey abundance. Our results were similar, as fish of

the second and third hatching cohorts were smaller and had a

lower growth rate despite higher CHLa concentration (Van Bev-

eren et al., 2016).

The large majority of fish from the first hatching cohort with fas-

ter larval growth recruited to our SMURFs during the first and high-

est recruitment peak. Similar results were found in other species

with faster larval growth and higher rate of survival (Hare & Cowen,

1997; Houde, 1987; Takahashi, Sassa, & Tsukamoto, 2012; Wilson &

Meekan, 2002) being associated with higher recruit abundance (Fon-

tes, Santos, Afonso, & Caselle, 2011; Jenkins & King, 2006; Robert,

Castonguay, & Fortier, 2007; Shima & Findlay, 2002; Watanabe,

Kurita, Noto, Oozeki, & Kitagawa, 2003).

In summary, this first study of fine scale recruitment patterns of

Atlantic horse mackerel revealed a clear relationship between the

lunar cycle and the upwelling regime with both spawning and

recruitment to nearshore environments. These processes could be

driving population fluctuations and hence be key to inform manage-

ment of such an important commercial species. In addition, this

study suggests that nearshore areas might be important nursery

grounds for the growth of post-larval and juvenile Atlantic horse

mackerel.
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dos do Instituto do Biolog�ıa Mar�ıtima, 29, 1–21.

Beldade, R., Borges, R., & Gonc�alves, E. J. (2006). Depth distribution of

nearshore temperate fish larval assemblages near rocky substrates.

Journal of Plankton Research, 28, 1003–1013. https://doi.org/10.

1093/plankt/fbl035

Beldade, R., Erzini, K., & Gonc�alves, E. J. (2006). Composition and tempo-

ral dynamics of a temperate rocky cryptobenthic fish assemblage.

Journal of the Marine Biological Association of the United Kingdom, 86,

1221–1228. https://doi.org/10.1017/S0025315406014226

Berenbeim, D. Y. (1974). On regularities in the variability of the spawning

terms of horse mackerel (Trachurus trachurus) within the spawning

area. ICES CM 1974, J14, 9. (mimeo).

Borges, R., Beldade, R., & Gonc�alves, E. (2007). Vertical structure of very

nearshore larval fish assemblages in a temperate rocky coast. Marine

Biology, 151, 1349–1363. https://doi.org/10.1007/s00227-006-0574-z

Borges, R., Ben-Hamadou, R., Ch�ıcharo, M. A., R�e, P., & Gonc�alves, E. J.
(2007). Horizontal spatial and temporal distribution patterns of near-

shore larval fish assemblages at a temperate rocky shore. Estuarine,

Coastal and Shelf Science, 71, 412–428. https://doi.org/10.1016/j.ec

ss.2006.08.020

Borges, F., Dinis, H., & Monteiro, C. (1977). Resultats preliminaires sur la

ponte, composition des tailles et etat du stock du chinchard (Trachu-
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