Global patterns of kelp forest change over the past half-century

1School of Resource and Environmental Management, Hakai Institute, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; 2Department of Biological Science, Florida State University, Tallahassee, FL 32306; 3Department of Integrative Biology, Oregon State University, Corvallis, OR 97331; 4Department of Biological Sciences and Marine Research Institute, University of Cape Town, 7701 Rondebosch, South Africa; 5Department of Geography, University of California, Los Angeles, CA 90095; 6Southern Seas Ecology Laboratories, The Monastery, The University of Adelaide, Adelaide, SA 5005, Australia; 7Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001 TAS, Australia; 8College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK 99775; 9Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950; 10Norwegian Institute for Water Research, 0349 Oslo, Norway; 11Subtropical Ecology Laboratory and Marine Conservation Center, Estación Costera de Investigaciones Marinas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile; 12Interdisciplinary Centre for Marine and Environmental Research, 4450-208 Matosinhos, Portugal; 13Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; 14Marine Science Institute, University of California, Santa Barbara, CA 93106; 15Leigh Marine Laboratory, Institute of Marine Science, The University of Auckland, Auckland 0941, New Zealand; 16Geology Institute, University of Western Australia, Perth, WA 6009, Australia; 17School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; 18Department of Agriculture, Forestry and Fisheries, Roggebaai 8012, South Africa; 19Centro de Investigación y Desarrollo en Recursos y Ambientes Costeros, Universidad de Los Lagos, Puerto Montt 5480000, Chile; 20Centro de Biotecnología y Bioingeniería, Universidad de Los Lagos, Puerto Montt 5480000, Chile; 21Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064; 22Museo Nacional de Historia Natural, Santiago, 22192 Concarneau Cedex, France; 23Department of Biology, San Diego State University, San Diego, CA 92182; 24Centre for Environmental Data and Recording, National Museums Northern Ireland, Holywood, Co. Down BT18 0EU, United Kingdom; 25Channel Islands National Park, Ventura, CA 93009; 26Institute of Marine Research, 4817 His, Norway; 27School of Marine Sciences, University of Western Australia, Perth, WA 6009, Australia; 28School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; 29Department of Biology, University of Massachusetts, Boston, MA 02125

Edited by Michael H. Graham, Moss Landing Marine Laboratories, Moss Landing, CA, and accepted by the Editorial Board Member David W. Schindler October 3, 2016 (received for review April 15, 2016)

Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = −0.018 y−1). Our analysis identified declines in 38% of ecoregions for which there are data (−0.015 to −0.18 y−1), increases in 27% of ecoregions (0.015 to 0.11 y−1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.

Significance

Kelp forests support diverse and productive ecological communities throughout temperate and arctic regions worldwide, providing numerous ecosystem services to humans. Literature suggests that kelp forests are increasingly threatened by a variety of human impacts, including climate change, overfishing, and direct harvest. We provide the first globally comprehensive analysis of kelp forest change over the past 50 y, identifying a high degree of variation in the magnitude and direction of change across the geographic range of kelps. These results suggest region-specific responses to global change, with local drivers playing an important role in driving patterns of kelp abundance. Increased monitoring aimed at understanding regional kelp forest dynamics is likely to prove most effective for the adaptive management of these important ecosystems.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. M.H.G. is a Guest Editor invited by the Editorial Board. Freely available online through the PNAS open access option.

Data deposition: The global database of kelp abundance time series has been published on the Kelp Ecosystem Ecology Network website (www.kelpecosystems.org/data/), and on the Temperate Reef Base website (temperatereefbase.imas.utas.edu.au/portalsearch?uuidweb65c53-3bf4-4569-65eb-0722011f9d9e). All data processing, analysis, and visualization R code have been made available via GitHub (https://github.com/kelpecosystems/global_kelp_time_series).

1To whom correspondence should be addressed. Email: kkrumhan@sfu.ca.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606102113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1606102113

PNAS | November 29, 2016 | vol. 113 | no. 48 | 13785–13790
However, even where clear global declines have been detected, trajectories of change are often not uniform in direction and magnitude among regions (e.g., ref. 6). Examining patterns of regional change can provide important insights into the mechanisms underlying global change, and lead to more specific recommendations for local and regional management actions aimed at reversing or lessening further ecosystem degradation (7). Such regional insights are particularly useful, as local and regional stressors may be more amenable to management and conservation actions than global stressors (8).

Global declines have been documented in a number of marine habitat-forming or “foundation” species (sensu ref. 9), including seagrasses, corals, and oysters (2, 6, 10). The loss of these species often leads to a direct reduction in ecosystem services critical to human well-being (11–13), and the local demise of taxa that provide those services (14, 15). The brown algae known as kelps (Order Laminariales) are globally important foundation species that occupy 43% of the world’s marine ecoregions (defined in ref. 16) along coastlines of all continents except Antarctica. Kelps are useful sentinels of change because they are highly responsive to environmental conditions (17, 18), as a passive picture of expected many human activities that impact the coastal zone (e.g., harvesting, pollution, sedimentation, invasive species, fishing, recreation) (19). Kelps are among the most prolific primary producers on the planet, supporting productivity per unit area rivaling that of intensively cultivated agricultural fields and tropical rainforests (20, 21). Kelps enhance diversity and secondary productivity locally through the formation of biogenic habitat (22, 23), and over broad spatial scales via detrital subsidies (24). Kelp forests support numerous ecosystem services, including commercial fisheries, nutrient cycling, and shoreline protection, valued in the range of billions of dollars annually (19, 25, 26). Consequently, changes in the global abundance of kelps would have far reaching impacts on ecosystem health and services.

Historically, kelp forest ecosystems have demonstrated a high degree of resilience (27, 28), but recent evidence suggests that the capacity of kelp forests to recover from disturbance may be eroding (29, 30). Kelp forest declines have now been documented in many regions in response to a variety of stressors (18, 31–35), but kelp abundances have been stable or increasing in other areas (17, 36, 37). Here, we amass a global database of kelp abundances to provide a comprehensive picture of kelp forest change. Specifically, we assess the evidence for two possible patterns: (i) coherent patterns of change across the global range of kelps, with a global average trend that is large relative to regional variability; or (ii) regional variability that is far larger than any global trend. The former pattern would suggest that global stressors are the main driver of kelp forest dynamics, whereas the latter pattern indicates a dominant influence of regional drivers or region-specific responses to global drivers of change. The results of our analysis provide key insights into the trajectory of one of the world’s most productive ecosystems.

Results

Our database contains data from 34 of the 99 global ecoregions where kelps exist, covering a large portion of the temperate range of kelps as well as a few Arctic regions (Fig. 1). Our analysis revealed that trajectories of change in kelp abundances were highly variable across regions (Figs. 2 and 3 and SI Appendix, Figs. S1 and S2). Using all available data across the greatest time span for each ecoregion, we estimated a high probability of decline (≥95%) in kelp abundances for Central Chile (instantaneous rate of change = −0.150, n = 7 sites from 2004 to 2013), the Aleutian Islands (−0.071, n = 147 sites from 1987 to 2010), the South Australian Gulfs (−0.059, n = 22 sites from 1968 to 2012), the North Sea (−0.024, n = 33 sites from 1975 to 2013), North-Central California (−0.019, n = 116 sites from 1973 to 2012), and the Bassian ecoregion (−0.015, n = 121 sites from 1992 to 2012) (Figs. 2 and 3 and SI Appendix, Figs. S1 and S2). High-magnitude declines were also inferred for the Agulhas Bank (−0.177, n = 4 sites from 1992 to 1995) and Humboldt (−0.073, n = 3 sites from 1996 to 2007) ecoregions, but there is greater uncertainty in these trends. There was also evidence for a small overall decline in the Gulf of Maine (93% probability, −0.028, n = 25 sites from 1978 to 2014) and the Scotian Shelf (83% probability, −0.020, n = 31 sites from 1952 to 2014) ecoregions, but, again, these trends were associated with higher uncertainty (Figs. 2 and 3 and SI Appendix, Figs. S1 and S2). When data were partitioned by decade, our analysis identified a high probability of decline in kelps from 2003 to 2012 in the South Australian Gulfs (−0.092) and the Scandinavian ecoregion (−0.015); from 1993 to 2002 in the Aleutian Islands (−0.098), Cape Howe (−0.080), Gulf of Maine (−0.036), and Bassian (−0.022) ecoregions; and from 1983 to 1992 in the Manning–Hawkesbury ecoregion (−0.280) (Fig. 2).

We identified three ecoregions where there was a high probability of increase in kelp abundance over the time periods for which we have data (Figs. 2 and 3 and SI Appendix, Figs. S1 and S2): the Southern European Atlantic Shelf (instantaneous rate of change = 0.114, n = 8 sites from 2004 to 2013), the Southern California Bight (0.018, n = 178 sites from 1980 to 2014), and Namaqua (0.104, n = 9 sites from 1995 to 2006). Relatively high-magnitude increases were also inferred for the Gulf of St. Lawrence (0.072, n = 4 sites from 2000 to 2002), North American Pacific Fjordland (0.043, n = 9 sites from 1976 to 2013), Beaufort Sea (0.027, n = 4 sites from 2003 to 2007), and Northeastern Australia (0.026, n = 13 sites from 1999 to 2011) ecoregions, but there was greater uncertainty in these trends (Figs. 2 and 3 and SI Appendix, Figs. S1 and S2). When data were partitioned by decade, high-probability increases were inferred from...
2003 to 2012 in the Gulf of Alaska (0.085) and Southern California Bight (0.018) (Fig. 2). Large uncertainty in the posterior rate estimates of the remaining ecoregions precluded conclusions regarding the direction of trends (Figs. 2 and 3 and SI Appendix, Figs. S1 and S2). As a result, 35% of ecoregions were inferred not to exhibit strong evidence of a directional change.

Our analysis detected a global average decline (i.e., the mean of site-level slopes) negative, instantaneous rate of change ≈ -0.018 yr$^{-1}$, $n = 1,138$ sites from 1952 to 2015 (Fig. 4) that was an order of magnitude smaller than the largest proportional rate of change observed regionally (-0.177 yr$^{-1}$ in Agulhas Bank). Although the majority of the dataset was composed of relatively short-duration studies (71% were < 20 yr in duration) (SI Appendix, Fig. S3), the negative global trend detected by our analysis was most strongly influenced by declines detected in datasets that were collected over time periods longer than 20 yr (SI Appendix, Fig. S4) in 10 ecoregions (Scotian Shelf, South Australian Gulfs, North Sea, Gulf of Maine, North-Central California, Celtic Seas, North Sea, Southern California Bight, Aleutian Islands, and Southern Norway). Slope estimates associated with time series shorter than 20 yr had higher variability, and more commonly showed no directional change (SI Appendix, Fig. S4). The global average trend was also most strongly influenced by ecoregions with the most data (i.e., the Aleutian Islands, North-Central California, Southern California Bight, Bassian, Cape Howe, Celtic Seas), and therefore may not be representative of large portions of the range of kelp where data were missing entirely (i.e., Eastern Canadian Arctic and West Greenland Shelf, the Russian Arctic, Cold Temperate Northwest Pacific, Southern Chile and the Patagonian Shelf, Sahara Upwelling, Eastern Bering Sea, Southern New Zealand, Great Australian Bight) (Fig. 1), or where data were sparse through time and across space (Figs. 1 and 2). Furthermore, although the earliest data were collected in 1952, the bulk of available data were collected from the 1990s to the present (Fig. 1 and SI Appendix, Fig. S3), with the temporal distribution of available data differing by ecoregion (Fig. 1).

Discussion

Global declines of a focal species group can indicate that the cumulative effects of single or multiple stressors are overwhelming the resilience of species throughout their range. The potential for this decline is considered more likely for species with slow postdisturbance recovery rates [e.g., corals (38)], those species that display little seasonal variability in abundance [e.g., mangroves (39)], or those species experiencing stressors of sufficiently widespread and high magnitude [e.g., fishes (1)]. However, for many taxa, globally coherent signals of change are unlikely when the identity and magnitude of drivers vary widely on local and regional scales (4, 17, 40), where species and ecosystems within taxonomic groups respond variably to change, or where abiotic and biotic contexts vary widely across geographic locations (41). The global average decline detected by our analysis was modest compared with the large interregional variability in the trajectories of change exhibited by kelps across their range. Many ecoregions did not exhibit evidence of directional change, and for those ecoregions that did, both declines and increases were evident at rates much larger than the global average. These findings suggest region-specific signals of global change, with local factors playing a dominant role in driving kelp forest dynamics.

Many kelp forest ecosystems are naturally highly variable on both seasonal and interannual timescales, and over small spatial scales (42–44), reflecting a high reactivity to environmental drivers and variation in their capacity to resist (45) and recover from both small- and large-scale disturbances (46, 47). This wide temporal variation contrasts with other marine foundation species such as seagrasses (48, 49) and corals (50), which tend to hold space for many years and take decades to recover from disturbance. For kelp, rapid recovery following catastrophic population losses is enabled by frequent recruitment and fast individual growth rates; indeed, kelps have some of the fastest global declines of a focal species group. The potential for this decline is considered more likely for species with slow postdisturbance recovery rates [e.g., corals (38)], those species that display little seasonal variability in abundance [e.g., mangroves (39)], or those species experiencing stressors of sufficiently widespread and high magnitude [e.g., fishes (1)]. However, for many taxa, globally coherent signals of change are unlikely when the identity and magnitude of drivers vary widely on local and regional scales (4, 17, 40), where species and ecosystems within taxonomic groups respond variably to change, or where abiotic and biotic contexts vary widely across geographic locations (41). The global average decline detected by our analysis was modest compared with the large interregional variability in the trajectories of change exhibited by kelps across their range. Many ecoregions did not exhibit evidence of directional change, and for those ecoregions that did, both declines and increases were evident at rates much larger than the global average. These findings suggest region-specific signals of global change, with local factors playing a dominant role in driving kelp forest dynamics.

Many kelp forest ecosystems are naturally highly variable on both seasonal and interannual timescales, and over small spatial scales (42–44), reflecting a high reactivity to environmental drivers and variation in their capacity to resist (45) and recover from both small- and large-scale disturbances (46, 47). This wide temporal variation contrasts with other marine foundation species such as seagrasses (48, 49) and corals (50), which tend to hold space for many years and take decades to recover from disturbance. For kelp, rapid recovery following catastrophic population losses is enabled by frequent recruitment and fast individual growth rates; indeed, kelps have some of the fastest
The regional variability in change detected by our analysis is also a reflection of the diversity of multiscaled stressors whose effects vary in direction and magnitude across the geographic range of kelp forests (52–54). In some cases, the results of our analysis are consistent with predictions regarding regional trends in temperature, with decreases in abundance in locations where water temperatures are warming (e.g., Bassian ecoregion, Gulf of Maine, Scotian Shelf) (32, 33) and increases where water temperatures are cooling (e.g., Western South Africa, Southern California Bight) (52, 55). In many instances, literature suggests that climate-driven temperature change is acting synergistically with other stressors, such as the fishing of sea urchin predators [Bassian ecoregion (7)], pollution [South Australian Gulfs (56)], and invasive species [Scotian Shelf (32)] to cause the kelp declines detected by our analysis. However, our analyses identified trajectories of change in some regions that were the opposite of the trajectories of change predicted by climate alone (e.g., decreases in central and Northern Chile, the Aleutian Islands), suggesting the overwhelming influences of other drivers. For example, kelp harvesting accounted for recent kelp declines in Central and Northern Chile despite a regional cooling trend (57). In other instances, regional increases in kelp (e.g., west coast of Vancouver Island, Southern California Bight) can be attributed to successful local management efforts, including the recovery of previously exploited sea urchin predators (58) and reductions in local pollution levels (59). Regional variation in the trajectories of kelp change was also influenced by the underlying frequency of sea urchin-driven phase shifts that characterize many kelp forest ecosystems (28, 30). For example, long-term declines in the Aleutians were associated with persistent shifts toward sea urchin barrens since the 1990s (60). Such long-term change in kelp abundances may be obscured in systems that experience more frequent phase shifts, such as the Scotian Shelf (47) and Northern, Central, and Southern California (61–63). In some regions, identified trajectories were opposite to those trajectories documented in local studies (e.g., South European Atlantic Shelf, Western Australia) (64, 65). These discrepancies are likely a result of the short time series available for these regions, the greater ability of focused regional studies to pick up certain types of change (e.g., range changes, shifts in species composition), and/or the occurrence of discrete events that disrupt stability or gradual change (18).

We have compiled and analyzed the most comprehensive database of subtidal kelp abundance time series to date. However, there remains a high degree of uncertainty in the trajectory of change across the global range of kelps, with few to no data in many regions where kelp exists. Even in ecoregions where kelps have been sampled, datasets contain few sites and are characterized by inconsistent sampling over time. In particular, there is a noticeable lack of historical “baseline” data by which to benchmark change, with the majority of our data having been collected within the past 30 y. This data limitation is especially true for Arctic regions, where climate change impacts are anticipated to be highest (52). The decrease in the number of sites in our dataset in the past 5 y is also a potential cause for concern, although this decrease may partially reflect the exclusion of recently initiated monitoring programs that did not meet our criteria for inclusion (≥2 y in duration). Nonetheless, the reality is that the majority of subtidal research programs are short in duration due, in large part, to variable and unpredictable funding. Consequently, in some regions, there has been a clear shift in emphasis away from long-term monitoring for this key group of foundation species (25). Detecting future changes in kelp ecosystems at regional and global scales is best achieved by methodologically consistent, long-term monitoring efforts broadly distributed throughout all ecoregions (51). The use of aerial and satellite data to monitor changes in kelp canopies can help fill gaps in effort (17, 42), but these technologies are useful only for kelps that have surface canopies, whose current geographic distribution represents only about half of the total global extent of kelps.

Overall, our results show a high degree of variability within and among regions in the direction and magnitude of kelp forest change over the past half-century, with declines noted in just over a third of ecoregions included our analysis. This result is strikingly different from that reported for many other marine and terrestrial systems that are experiencing consistent declines in species abundance across the globe (1–3, 6) and, in many ways, highlights the atypical resilience of kelps. However, where kelp resilience is eroding and leading to declines in abundance (7, 18, 54, 66, 67), impacts to ecosystem health and services can be far-reaching (19, 25, 26, 68, 69). Maintaining the resilience of kelp forest ecosystems into the future will rely on the continued monitoring of kelps and management of stressors on local and regional scales.

Materials and Methods

We compiled time series of diver-sampled kelp abundances from published and contributed datasets (SI Appendix, Table S1). We also collected published datasets from a Web of Science search conducted in July–August 2013 and repeated in May 2014. The search terms we used were: kelp and loss, abundance, change, recovery, stability, decline, gain, time series, density, biomass, percent cover, and disturbance. We also used the terms in- crease and decrease in association with abundance, biomass, and density. This search returned a total of 4,490 results. We included studies if they had at least three measurements of diver-sampled abundance (quadrat, transect, or plot-scale) of a kelp species (Order Laminariales) that spanned more than 2 y. This literature search resulted in the inclusion of datasets from 48 published studies (SI Appendix, Table S1). We also requested datasets from the Kelp Ecosystem Ecology Network listserv (www.kelpecosystems.org) and from additional scientists identified by network members, and included these datasets if they met our criteria. Relevant measures of abundance were biomass density, individual density, stipe density, or percent cover. We note that these measures of abundance may not capture some range...
contractions or losses of kelp bed area, depending on the local and regional sampling regime. However, they were chosen because they represent the longest time series available for the widest range of kelp species. Data using the SACFOR scale (S, superabundant; A, abundant; C, common; F, frequent; O, occasional; R, rare) from Europe were translated to corresponding abundances (70). Only data from subtidal kelps (>3-m depth) were included. Juvenile kelps (independently defined by data collectors) were excluded due to variable reporting of their abundances across datasets. The datasets included and their associated citations are listed in SI Appendix, Tables S1 and S2. Species included in each ecoregion are listed in SI Appendix, Table S1.

We compiled datasets into a single database representing time series of kelp abundance at a particular site (as defined by each author or data contributor). In some datasets, this series represented changes at the level of a population (single species), but, more commonly, this series represented a summed assemblage of multiple kelp species. The composition of which was made to remain consistent throughout the duration of each time series. We note that aggregating across species precludes us from detecting changes in kelp species composition within regions. We averaged abundance values at the site scale across all depths and replicate samples taken during a given sampling event, keeping the number of replications consistent across sampling dates. For most trajectories, we averaged across sampling events that occurred within 45 d of one another to generate a single value, and treated that average as having occurred on the mean date of the combined sampling events. We aggregated samples from some datasets over time intervals other than 45 d to accommodate sampling regimes specific to particular studies (4 d, Southern Chile; 20 d, Nova Scotia and Northern Ireland; 31 d, Northern Chile; and 65 d Southern California).

We selected only one metric for analysis in instances where studies included multiple metrics of abundance (i.e., biomass density, individual density, stipe density, percent cover). For each trajectory, we analyzed the metric with the greatest number of sampling events. In the case of multiple metrics having the same number of samples, we selected the metric using the following hierarchy: biomass density (per square meter), stipe density (per square meter), individual density (per square meter), and percent cover.

We used Bayesian hierarchical linear models to estimate proportional rates of change in the dataset as a whole (1949–2015) and split by decade (1983–1992, 1993–2002, and 2003–2012). We note that similar results were achieved using a likelihood-based mixed-effects model framework. We discuss trends at the global and ecoregion levels only, because the analytical method used is not well suited to describing trends at sites where data are sparse. We grouped sites by ecoregion according to Spalding et al. (16). In each model, we simultaneously estimated a unique rate for each time series and for each chosen geographic region (with ecoregion or global subdivisions). We achieved this estimation by considering the rate for each unique time series as a random (normal) deviation from the mean rate within that geographic region. To account for study-level differences in uncertainty, we allowed for a unique error variance within each study within each geographic region.

The model describing the abundance of kelps at the ith site within the jth study region within the kth geographic grouping (ecoregion or globe) at time t was

\[y_{k,j,t} = kelp_{k,j,t} / ecoregion-focal unit max + 0.01. \]

We used a hierarchical framework to account for site-level deviations from the geographic group-level mean parameters. This method is essential to account for among-site variability in trends while also estimating overall geographic group level mean trends (71). Thus, the site level deviations \(y_{k,j,t} \) and \(\gamma_{k,j,t} \) were assumed to follow a multivariate normal (MVN) distribution:

\[\begin{bmatrix} y_{k,j,t} \\ \gamma_{k,j,t} \end{bmatrix} \sim \text{MVN}(0, \Sigma). \]

For numerical stability and efficiency, instead of estimating \(\Sigma \) directly, we used the Cholesky decomposition (4) of the correlation matrix (\(\Sigma \)) and the SD in intercept and slope among sites \(\sigma_j = [\sigma_0, \sigma], \) with a Lewandowski–Dorota–Joe (LKD) prior in \(L \) (github.com/stan-dev/stan/releases/download/v2.7.0stan-reference-2.7.0.pdf), where

\[\Sigma = \text{diagonal}(\sigma_j) \Omega \]

\[\Omega = \text{L} \Omega \text{cholesky}(\nu = 2.0). \]

Prior distributions for \(\sigma_j \) and \(\nu_j \) were as follows:

\[y_{k,j,t} / \gamma_{k,j,t} \sim \text{unif}[0, \infty). \]

\[\sigma_j = \text{half-Cauchy}(0, 1.5). \]

\[\nu_j = \text{unif}[0, 3]. \]

\[\gamma_{k,j,t} \sim \text{half-Cauchy}(0(2.5). \]

Because error variance may differ depending on the type of measurement (biomass density, individual density, stipe density, or percent cover) we allowed for different half-Cauchy hyperparameters \(\gamma_{k,j,t} \) on the study level error variance for each of the four measurement types.

We sampled posterior within a Bayesian hierarchical framework via the no-U-turn sampler variant of Hamilton Monte Carlo (72) in Stan via rstan (73, 74) using R (75). Sampling included three chains each of 3,000 iterations and a 1,500 –iteration burn-in period (sufficient to produce posterior convergence).

From the numerically generated posterior samples, we calculated the mean and two-tailed quantiles, or 90% symmetrical credible intervals (i.e., Bayesian analog to a confidence interval) for each parameter. We highlight those rate estimates for which the 90% posterior credible interval did not overlap zero as having a high probability of decline or increase. That is, if the upper bound of the 90% credible interval lies on zero, this value equates to a 95% probability of decline. We express the magnitude of change as the mean estimated slope (instantaneous rate of change per year), considering kelps to be declining where instantaneous rates are less than \(-0.015 \text{ y}^{-1}\) and increasing where rates are greater than \(0.015 \text{ y}^{-1}\) (representing rates of change equivalent to a halving or doubling in abundance over a 50-y period).

ACKNOWLEDGMENTS. We thank Robert Scheibling for comments on a previous draft of this manuscript and Paul Geoghegan and A. Le Gal for contributions to the dataset. This research was conducted as part of the Kelp and Climate Change Working Group supported by the National Center for Ecological Analysis and Synthesis, a center funded by National Science Foundation (Grant DEB-00-72908); the University of California, Santa Barbara; and the State of California. This work was also supported by Massachusetts Institute of Technology SeaGrant 2015-5-R/RCM-39 (to J.E.K.B.), a NaturalSciences and Engineering Research Council of Canada Discovery Grant (to A.K.S.), the Norwegian Institute for Water Research, and the Institute of Marine Research in Norway.

21. Mann KH (1973) Seaweeds: Their productivity and strategy for growth: The role of large marine algae in coastal productivity is far more important than has been supposed. Science 182(4116):975–981.

Table S1: Data sources for each ecoregion, including literature references for mined data sources and the names of contributed data sets. Contributed data sets are described in more detail in Table S2. Also included are the species represented by each data set in each ecoregion.

<table>
<thead>
<tr>
<th>Ecoregion</th>
<th>Data source</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agulhas Bank</td>
<td>Contributed: South Africa Gansbaii</td>
<td>Ecklonia maxima</td>
</tr>
<tr>
<td>Aleutian Islands</td>
<td>Contributed: Estes NPRB</td>
<td>Agarum clathrus, Pleurophyicus gardneri, Nereocystis luetkeana, Laminaria yezoensis, Laminaria longipes, Eualaria fistulosa, Cymathaea triplicata, Agarum clathratum</td>
</tr>
<tr>
<td>Bassian</td>
<td>Contributed: Kelp Cover Australia Victoria, Kelp Cover Temperate Australia</td>
<td>Undaria pinnatifida, Macroystis pyrfera, Lessonia corrugata, Ecklonia radiata</td>
</tr>
<tr>
<td>Beaufort Sea</td>
<td>Contributed: Konar Beaufort Sea</td>
<td>Laminaria solidungula, Saccharina latissima, Alaria esculenta</td>
</tr>
<tr>
<td>Cape Howe</td>
<td>Contributed: Kelp Cover Australia Victoria, Kelp Cover Temperate Australia</td>
<td>Ecklonia radiata</td>
</tr>
<tr>
<td>Celtic Seas</td>
<td>Mined: 1, 2 Contributed: The Brittany Rebent Monitoring, Northern Ireland Summary</td>
<td>Undaria pinnatifida, Saccharina latissima, Laminaria ochroleuca, Laminaria hyperborea, Laminaria digitata, Alaria esculenta</td>
</tr>
<tr>
<td>Central Chile</td>
<td>Contributed: Northern Chile Fondecyt</td>
<td>Macroystis pyrfera, Lessonia trabeculata</td>
</tr>
<tr>
<td>Chiloense</td>
<td>Contributed: Southern Chile</td>
<td>Macrocystis pyrfera</td>
</tr>
<tr>
<td>Gulf of Alaska</td>
<td>Mined: 3 Contributed: Konar Gulf of Alaska</td>
<td>Saccharina latissima, Pleurophyicus gardneri, Nereocystis luetkeana, Laminaria yezoensis, Laminaria longipes, Laminaria bongardiana, Eualaria fistulosa, Cymathaea triplicata, Costaria costata, Alaria marginata, Agarum clathratum</td>
</tr>
<tr>
<td>Gulf of St. Lawrence</td>
<td>Mined: 5, 6</td>
<td>Saccharina latissima, Alaria esculenta, Agarum clathratum</td>
</tr>
<tr>
<td>Houtman</td>
<td>Mined: 7, 8, 9 Contributed: Kelp Cover Temperate Australia, Australia Western Australia Wernberg</td>
<td>Ecklonia radiata</td>
</tr>
<tr>
<td>Humboldtian</td>
<td>Mined: 10 Contributed: Northern Chile Fondecyt</td>
<td>Macroystis pyrfera, Lessonia trabeculata</td>
</tr>
<tr>
<td>Leeuwin</td>
<td>Contributed: Australia Western Australia Wernberg</td>
<td>Ecklonia radiata</td>
</tr>
<tr>
<td>Manning-Hawkesbury</td>
<td>Mined: 11, 12, 13</td>
<td>Ecklonia radiata</td>
</tr>
<tr>
<td>Namaqua</td>
<td>Mined: 14, 15</td>
<td>Laminaria pallida, Ecklonia maxima</td>
</tr>
<tr>
<td>Pacific Fjordland</td>
<td>Mined: 18, 19, 20 Contributed: Edwards Baja, San Nicholas Island, Channel Islands National Park, PISCO Subtidal</td>
<td>Undaria pinnatifida, Pterygophora californica, Pleurophyicus gardneri, Nereocystis luetkeana, Macroystis pyrfera, Laminaria setchelli, Saccharina latissima, Laminaria farlowii, Ecklonia arborea, Egregia menziesii, Dictyoneurum californicum, Costaria costata, Alaria marginata, Agarum fimbriatum</td>
</tr>
<tr>
<td>North Sea</td>
<td>Contributed: New Zealand Hakurai Gulf, Northern New Zealand</td>
<td>Lessonia variegata, Ecklonia radiata</td>
</tr>
<tr>
<td>Northeastern New Zealand</td>
<td>Mined: 21, 22, 23, 24, 25</td>
<td>Undaria pinnatifida, Saccharina latissima, Pterygophora californica, Pleurophyicus gardneri, Nereocystis luetkeana, Macroystis pyrfera, Laminaria setchelli,Saccharina latissima, Laminaria farlowii, Ecklonia arborea, Egregia menziesii, Dictyoneurum californicum, Costaria costata, Alaria marginata, Agarum fimbriatum</td>
</tr>
<tr>
<td>Location</td>
<td>Research Contributions</td>
<td>Species</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Scotian Shelf</td>
<td>Mined: 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40</td>
<td>pyrifera, Lessoniopsis littoralis, Laminaria setchellii, Laminaria farlowii, Ecklonia arborea, Egregia menziesii, Costaria costata, Alaria marginata, Agarum fimbriatum, Saccharina groenlandica</td>
</tr>
<tr>
<td>South Australian Gulfs</td>
<td>Contributed: Kelp Cover Temperate Australia, Australia Connell Canopy Loss</td>
<td>Saccharina latissima, Laminaria digitata, Ecklonia radiata</td>
</tr>
<tr>
<td>South European Atlantic Shelf</td>
<td>Contributed: The Brittany Rebent Monitoring</td>
<td>Undaria pinnatifida, Saccharina latissima, Laminaria ochroleuca, Laminaria hyperborea</td>
</tr>
<tr>
<td>Southern Norway</td>
<td>Contributed: Norway Inner Coast (monitoring), Norway Inner Coast (assessment), Norway Monitoring</td>
<td>Saccharina latissima, Laminaria hyperborea, Laminaria digitata</td>
</tr>
<tr>
<td>Western Bassian</td>
<td>Contributed: Kelp Cover Temperate Australia,</td>
<td>Ecklonia radiata, Macrocystis pyriform</td>
</tr>
</tbody>
</table>
Table S2. Contributed data set information, including the corresponding ecoregion, and the years covered, number of sites, contact person, and associated publications.

<table>
<thead>
<tr>
<th>Data Set Name</th>
<th>Ecoregion</th>
<th>Years</th>
<th># Sites</th>
<th>Contact</th>
<th>Associated Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancouver Island</td>
<td>Oregon, Washington</td>
<td>1987-2011</td>
<td>8</td>
<td>Jane Watson</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Vancouver Coast and Shelf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Nicolas Island</td>
<td>Northern California and Southern California Bight</td>
<td>1980-2011</td>
<td>7</td>
<td>Mike Kenner</td>
<td>45</td>
</tr>
<tr>
<td>Witman Gulf of Maine</td>
<td>Gulf of Maine</td>
<td>1979-2014</td>
<td>4</td>
<td>Jon Witman</td>
<td>46, 47</td>
</tr>
<tr>
<td>Konar Beaufort Sea</td>
<td>Beaufort Sea</td>
<td>2003-2007</td>
<td>4</td>
<td>Brenda Konar</td>
<td></td>
</tr>
<tr>
<td>Channel Islands National Park</td>
<td>Northern California and Southern California Bight</td>
<td>1986-2011</td>
<td>16</td>
<td>David Kushner</td>
<td>48</td>
</tr>
<tr>
<td>Central Chile</td>
<td>Central Chile</td>
<td>2013-2013</td>
<td>5</td>
<td>Alejandro Perez Matus</td>
<td>49</td>
</tr>
<tr>
<td>Fondecyt # 11110351 & 1151094</td>
<td>Central California and Southern California Bight</td>
<td>1999-2012</td>
<td>146</td>
<td>Jenn Caselle Mark Carr</td>
<td></td>
</tr>
<tr>
<td>PISCO Subtidal</td>
<td>Central California and Southern California Bight</td>
<td>2001-2014</td>
<td>8</td>
<td>Dan Reed</td>
<td>51</td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>Southern California Bight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Long Term Ecological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelp Cover</td>
<td>Bassian, Cape Howe, Houtman, South Australian Gulfs, Western Bassian</td>
<td>1992-2012</td>
<td>187</td>
<td>Graham Edgar Neville Barrett</td>
<td>52, 53, 54</td>
</tr>
<tr>
<td>Temperate Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estes NPRB</td>
<td>Aleutian Islands</td>
<td>1987-2010</td>
<td>147</td>
<td>Mike Kenner, Jim Estes</td>
<td></td>
</tr>
<tr>
<td>Isla Natividad, Baja California, Mexico</td>
<td></td>
<td>2006-2014</td>
<td>5</td>
<td>Florenza Micheli, Jorge Torre (Comunidad y Biodiversidad, Asociacion Civil)</td>
<td>55, 56</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Northeastern New Zealand</td>
<td>2007-2011</td>
<td>1</td>
<td>Nick Shears</td>
<td>57</td>
</tr>
<tr>
<td>Hauraki Gulf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern New Zealand</td>
<td>Northeastern New Zealand</td>
<td>1999-2011</td>
<td>12</td>
<td>Nick Shears</td>
<td>58, 59</td>
</tr>
<tr>
<td>The Brittany Rebent Monitoring</td>
<td>Celtic Seas, South European Atlantic Shelf</td>
<td>2004-2013</td>
<td>25</td>
<td>Sandrine Derrien-Courtel</td>
<td>60, 61, 62</td>
</tr>
<tr>
<td>The European Water Framework</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directive Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia Western</td>
<td>Houtman and Leeuwin</td>
<td>2006-2011</td>
<td>6</td>
<td>Thomas Wernberg</td>
<td>63</td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Australia Wernberg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PISCO Oregon</td>
<td>Oregon, Washington</td>
<td>2001-2004</td>
<td>8</td>
<td>Mark Carr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vancouver Coast and Shelf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway Monitoring</td>
<td>North Sea and Southern Norway</td>
<td>1990-2013</td>
<td>31</td>
<td>Kjell Magnus Norderhaug</td>
<td>64, 65</td>
</tr>
<tr>
<td>Northern Chile</td>
<td>Central Chile and Humboldtian</td>
<td>2004-2007</td>
<td>4</td>
<td>Alejandro Perez Matus</td>
<td>66</td>
</tr>
<tr>
<td>Fondecyt # 1040425</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Ireland Summary</td>
<td>Celtic Seas</td>
<td>1982-2012</td>
<td>226</td>
<td>Julia Nunn and Claire Goodwin</td>
<td></td>
</tr>
<tr>
<td>Haida Gwaii</td>
<td>North American Pacific Fjordland</td>
<td>2010-2013</td>
<td>8</td>
<td>Anne Salomon</td>
<td></td>
</tr>
<tr>
<td>Southern Chile</td>
<td>Chiloense</td>
<td>2012</td>
<td>1</td>
<td>Alejandro Buschmann</td>
<td>67</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Years</td>
<td>Number</td>
<td>Author</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------</td>
<td>--------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Edwards Baja</td>
<td>Northern California and Southern California Bight</td>
<td>1997-2006</td>
<td>62</td>
<td>Matt Edwards</td>
<td></td>
</tr>
<tr>
<td>Kelp Cover Australia Victoria</td>
<td>Bassian and Cape Howe</td>
<td>1998-2011</td>
<td>45</td>
<td>Scott Ling</td>
<td>68</td>
</tr>
<tr>
<td>Australia Connell Canopy Loss</td>
<td>South Australian Gulfs</td>
<td>1968-2008</td>
<td>2</td>
<td>Sean Connell</td>
<td>69</td>
</tr>
<tr>
<td>Steneck Gulf of Maine</td>
<td>Gulf of Maine</td>
<td>1996-2003</td>
<td>16</td>
<td>Bob Steneck</td>
<td></td>
</tr>
<tr>
<td>Konar Gulf of Alaska</td>
<td>Gulf of Alaska</td>
<td>2003-2012</td>
<td>4</td>
<td>Brenda Konar</td>
<td></td>
</tr>
<tr>
<td>Norway Inner Coast (monitoring)</td>
<td>North Sea/Southern Norway</td>
<td>1976-2012</td>
<td>1</td>
<td>Kjell Magnus Norderhaug</td>
<td>70</td>
</tr>
<tr>
<td>Norway Inner Coast (assessment)</td>
<td>North Sea and Southern Norway</td>
<td>1975-2006</td>
<td>9</td>
<td>Frithjof E Moy</td>
<td>71, 72</td>
</tr>
</tbody>
</table>
Figure S1. Black circles show site level estimates of mean slope with bars denoting 90% credible intervals (data from 1-72). Sites are grouped by ecoregion and realm, with solid black vertical lines showing ecoregion level mean slopes and shaded bars indicating 90% credible intervals. Dashed lines denote 0. Bars are colored red where there is a high probability (>95%) that the slope does not overlap with zero.
Figure S1 continued
Figure S1 continued
Figure S2. Raw data by ecoregion with site and ecoregion level modeled slopes (data from 1-72). Data and slope estimates are colored and symboled by study (i.e., literature reference or contributed data set), while black lines show the ecoregion mean slope. Solid lines are used where site and ecoregion level slopes have a high probability (>95%) of being different from zero, and dashed lines are used where slopes do not meet this criterion. Shaded bands show the 90% credible interval around the mean rate of change (the black line).
Figure S2 continued
Cape Howe

mean slope: 0.005±0.010

Standardized Kelp Abundance+0.01

Study

- KelpCover_Australia_Victoria
- KelpCover_Temperate_Australia

Celtic Seas

mean slope: −0.010±0.010

Standardized Kelp Abundance+0.01

Study

- Davoult_etal_2011
- REBENT_Brittany_NW_France
- Northern_Ireland_Summary
- Trowbridge_etal_2013

Figure S2 continued

Southern California Bight

mean slope: 0.018±0.008

Southern Norway

mean slope: −0.009±0.018
Figure S2 continued

South European Atlantic Shelf
- Mean slope: 0.114±0.055
- Study: REBENT_Brittany_NW_France

Western Bassian
- Mean slope: −0.006±0.094
- Study: KelpCover_Temperate_Australia
Figure S3. The number of sites in the global data set by year (data from 1-72).
Figure S4. A) Site level slopes and associated standard error, plotted against study duration and colored according to sign (positive, negative, or no change) (data from 1-72). B) Distribution of site level slope estimates colored by sign (positive, negative, or no change).
References

