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Abstract

Determining the manner in which plant species shift their flowering times in

response to climatic conditions is essential to understanding and forecasting the

impacts of climate change on the world's flora. The limited taxonomic diversity and

duration of most phenological datasets, however, have impeded a comprehensive,

systematic determination of the best predictors of flowering phenology. Addition-

ally, many studies of the relationship between climate conditions and plant phenol-

ogy have included only a limited set of climate parameters that are often chosen a

priori and may therefore overlook those parameters to which plants are most phe-

nologically sensitive. This study harnesses 894,392 digital herbarium records and

1,959 in situ observations to produce the first assessment of the effects of a large

number (25) of climate parameters on the flowering time of a very large number

(2,468) of angiosperm taxa throughout North America. In addition, we compare the

predictive capacity of phenological models constructed from the collection dates of

herbarium specimens vs. repeated in situ observations of individual plants using a

regression approach—elastic net regularization—that has not previously been used

in phenological modeling, but exhibits several advantages over ordinary least

squares and stepwise regression. When herbarium‐derived data and in situ pheno-

logical observations were used to predict flowering onset, the multivariate models

based on each of these data sources had similar predictive capacity (R2 = 0.27). Fur-

ther, apart from mean maximum temperature (TMAX), the two best predictors of

flowering time have not commonly been included in phenological models: the num-

ber of frost‐free days (NFFD) and the quantity of precipitation as snow (PAS) in the

seasons preceding flowering. By vetting these models across an unprecedented

number of taxa, this work demonstrates a new approach to phenological modeling.
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1 | INTRODUCTION

Observations of how individual plants alter the timing of leaf pro-

duction, flowering, and fruiting in response to local temperature or

rainfall provide a way to evaluate the impacts of climate variation on

the world's flora. Changes in flowering phenology that have occurred

in response to recent warming have resulted not only in reproduc-

tive failure in some taxa (Inouye, 2008; Inouye & McGuire, 1991;

Inouye, Saavedra, & Lee‐Yang, 2003), but in some cases has pro-

duced mismatches between plants and the animals that depend on

their flowers as food resources (Huang & Hao, 2018; Reddy et al.,

2015; Schenk, Krauss, & Holzschuh, 2017). Thus, identifying the cli-

mate parameters that best predict changes in the timing of
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flowering, and accurately predicting the changes in flowering phenol-

ogy that are likely to occur under future climate change, is essential

to the prediction and management of the effects of climate change

on the reproductive success of angiosperm taxa and on the antago-

nistic (e.g., herbivores) and mutualistic (e.g., pollinators and seed dis-

persers) animals that rely on them. Generating robust predictions of

the effects of local climatic conditions on plant phenology is there-

fore a critical first step toward forecasting the effects of climate

change on plant populations, species, and communities, as well as on

the animals that depend on them.

To date, the intensive work required for repeated in situ phenolog-

ical observation has largely restricted long‐term studies of plant phe-

nology and its relation to climate in the United States to either a

comparatively small number of species (Leopold & Jones, 1947;

Schwartz & Reiter, 2000; Zhao & Schwartz, 2003) or to a narrow geo-

graphic range (Abu‐Asab, Peterson, Shetler, & Orli, 2001; Cook et al.,

2007; Dunnell & Travers, 2011; Miller‐Rushing & Primack, 2008). As a

result, our ability to generalize from these studies to a wider array of

species and climatic conditions remains limited. The design and appli-

cation of models that can detect the climatic factors that best predict

timing of phenological events in native plant species have until

recently also been limited by the lack of spatially extensive, long‐term
climate data (particularly for populations located at some distance

from the nearest weather monitoring station), and by the limited num-

ber of gridded climatic variables that have been readily available.

As a result, most spatially extensive examinations of the relation-

ship between local climate conditions and plant phenology have

depended on comparatively simple climate parameters, many of

which are chosen a priori. In such cases, the resulting models may

fail to include either the specific parameters to which plants are

most phenologically sensitive or all of the climate parameters to

which plants respond. The recent availability of digital herbarium

records, however, in combination with datasets such as those pro-

duced by PRISM and ClimateNA, which collectively provide esti-

mates of a wide array of historical climate parameters at local scales

throughout much of the globe (Wang, Hamann, Spittlehouse, & Car-

rol, 2016), offers the opportunity not only to conduct phenological

assessments across an unparalleled diversity of taxa and at broad

spatial scales, but also to conduct a continental‐scale assessment

designed to identify those climate parameters that best predict the

flowering phenology of each focal species.

Herbarium collections have been used in numerous studies to

document the seasonality of a wide array of species (Borchert,

Robertson, Schwartz, & Williams‐Linera, 2005; Boulter, Kitching, &

Howlett, 2006; Sahagun‐Godinez, 1996) and to examine regional, cli-

mate‐based variation in the phenological timing of well‐collected
species (Lavoie & Lachance, 2006; Matthews & Mazer, 2015; Park,

2016; Willis et al., 2017) at spatial scales that exceed the current

spatial and temporal scope of repeated in situ phenological observa-

tions. Furthermore, the unparalleled taxonomic diversity of herbar-

ium records has been leveraged to examine the collective

phenological properties of entire floras (Park, 2014, 2016) that could

not be assessed using other kinds of phenological records.

Assessments of phenological change over recent decades (Bertin,

Searcy, Hickler, & Motzkin, 2017; Lavoie & Lachance, 2006; Primack,

Imbres, Primack, & Miller‐Rushing, 2004) or across spatial climate

gradients (Bowers, 2007; Hereford, Scmitt, & Ackerly, 2017; Houle,

2007; Miller‐Rushing, Primack, Primack, & Mukunda, 2006) have

reported similar shifts based on observations of both living plants

and herbarium‐based phenological records.

While herbarium records are a useful source of phenological

information (Jones & Daehler, 2018), few studies have compared the

capacity of phenoclimatic models based on herbarium records to

predict flowering to those constructed from repeated in situ obser-

vations of the phenological status of living plants (hereafter referred

to as in situ observations, in contrast to phenological records derived

from herbarium collections). There is good reason to expect that

models based on herbarium collections will have lower predictive

power than those based on in situ observations of individual plants.

At the level of individual plants, if the flowering date is estimated by

the collection date of an herbarium specimen, it is intrinsically less

precise than if it is estimated using repeated observations of individ-

ual plants recorded at known intervals. This is because an herbarium

specimen may have been collected at any time during its flowering

period, so the collection date itself does not provide a precise metric

of either the date of flowering onset, its midpoint, or peak flowering.

Moreover, the digitally recorded information that is associated with

the majority of herbarium records typically documents only whether

a given specimen was in flower at the time of collection and there-

fore cannot distinguish among specimens collected at the onset of

flowering, at peak bloom, or at any other stage of flowering. By con-

trast, in situ phenological observations that of an individual extend

from before the onset of flowering to after its termination within a

single flowering season can be used to estimate the individual's flow-

ering onset and termination dates with a known level of precision

(depending on the frequency of observation). These dates, in turn,

can be used to estimate the date of the midpoint of flowering of an

individual plant.

Previous examinations of bias in herbarium collections have

found that temporal gaps in collection often occur during periods of

inclement weather; that collection effort is often concentrated at

locations that are easily accessible; and that herbarium holdings

often under‐sample threatened or endangered taxa while preferen-

tially sampling certain clades (most notably graminoids, Daru et al.,

2017). While in situ phenological observations may exhibit similar

biases, the repeated nature of in situ observations allows those cases

where gaps in observation occur (potentially leading to biased esti-

mates of flowering time) to be identified and removed, which is not

possible for herbarium specimens. Nevertheless, estimates of mean

flowering time in Boston based on the collection dates of herbarium

specimens were found to provide accurate estimates of mean flow-

ering time; to exhibit variation in flowering date similar to in situ

observations; and to remain accurate among taxa with both short

and long flowering durations (Primack et al., 2004).

The current study was designed to construct phenological mod-

els using a regression approach—elastic net regularization—that has
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several advantages over ordinary least squares regression and step-

wise regression analysis, both of which have been used extensively

to identify climatic parameters that influence the flowering dates

(FDs) of species represented by either herbarium‐derived data or

observations of living plants. In particular, elastic net regularization is

capable of incorporating multiple collinear explanatory factors (De

Mol, De Vito, & Rosasco, 2009; Raschkla, 2017). This is highly

advantageous in the development of robust phenoclimate models, as

potentially important climate parameters are often highly collinear

(Rawal, Kasel, Keatley, & Nitschke, 2015). To our knowledge, this is

the first study to apply elastic net regularization to develop pheno-

logical models that predict the FD of any species.

Here, we harnessed the power of 894,392 digital herbarium

records and 1,959 in situ observations to construct species‐specific
models of flowering phenology for each of 2,468 angiosperm taxa

using 25 distinct climate parameters. For seven additional species,

we constructed phenological models using both herbarium‐based
data and repeated in situ phenological observations. With this

unprecedented number of species‐specific phenological models, we

aimed to (a) determine the predictive ability of these species‐specific
phenological models at a continental scale; (b) compare the predic-

tive capacity of phenological models derived from herbarium records

of flowering dates vs. repeated in situ observations of flowering; and

(c) determine which climate parameters best predict flowering phe-

nology, while conducting model selection from a more extensive

array of climatic parameters (25 distinct climate parameters) than has

previously been used. By developing and vetting these phenoclimatic

models across an unparalleled number of taxa throughout North

America using elastic net regularization, a powerful under‐utilized
method, our goal is to provide a foundation and launching point for

a new approach to phenological modeling.

2 | MATERIALS AND METHODS

2.1 | Phenological data

Herbarium‐based estimates of FDs were obtained from 894,392 spec-

imen records of angiosperm species drawn from the digital archives of

72 herbaria throughout North America (see acknowledgements and

supporting information for complete listing) collected between 1901

and 2015. From these records, specimens that were not explicitly

recorded as being in flower were eliminated, as were those that did

not include either the precise GPS coordinates from which the sample

was collected or the precise date of collection. Duplicate specimens

(i.e., specimens of a given species collected on the same date and from

the same location) were also excluded from analysis.

In situ estimates of FD among living plants were derived from

flowering onset phenometric data collected from 2009 to 2015, as

provided by the USA National Phenology Network's database

(https://data.usanpn.org/observations/), and defined as the midpoint

between the estimated dates of flowering onset and termination by

a given individual in a given year. In order to ensure the accuracy of

these in situ estimates of flowering time, we included only those

individual plant records for which no more than 10 days had elapsed

between a date on which the plant had been recorded not to have

flowered yet and the date on which it was first observed to have

started flowering, and for which no more than 10 days had elapsed

between a date on which the plant was last observed in flower for a

given year and the date on which it was first observed to no longer

be in flower. In other words, data from the USA‐NPN included only

those individual plants for which the estimated flowering onset date

was no more than 10 days after a date on which the plant was

observed not to be in flower, and for which the last date on which

an individual was observed in flower was no more than 10 days

prior to a date on which the plant was observed not to be in flower.

As a result of this filtering, the date of the midpoint of flowering is

accurate within a maximum of 5 days.

2.2 | Data preparation and standardization

Herbarium specimens were collected across many decades and by

many collectors who sometimes documented collections using differ-

ing taxonomic nomenclature, so we standardized the taxonomic

nomenclature using the Taxonomic Name Resolution Service iPlant

Collaborative, Version 4.0 (Boyle et al., 2013, Accessed: April 4,

2017; http://tnrs.iplantcollaborative.org). Specimen identification was

updated using taxonomic information from The Plant List, the Inter-

national Legume Database and Information Service, the Global Com-

positae Checklist, and Tropicos.org. Specimens that could not be

identified unambiguously to the species level were eliminated.

In order to include only those species with a sufficient number of

observations for the development of accurate phenological models,

we excluded species represented by fewer than 100 herbarium sam-

ples. 2,468 taxa met these criteria, comprising 2,171 distinct species

as well as 117 taxa with subspecific epithets and 180 horticultural

varieties across 119 plant families, representing a total of 563,501

herbarium specimens distributed across North America (Supporting

Information Figure S1). These taxa represent a combination of woody

and herbaceous taxa, including both annual and perennial species. We

further identified seven of these angiosperm species that were also

represented in the USA‐NPN database by at least 100 in situ esti-

mates of FD; this dataset comprised a total of 1,959 individual FD

estimates. These seven species, which consisted of three tree species

(Cornus florida, Quercus agrifolia, and Quercus rubra) and four perennial

shrubs (Baccharis pilularis, Eriogonum fasciculatum, Larrea tridentata,

and Symphoricarpos albus) distributed throughout North America (Fig-

ure 1), were analyzed separately in order to compare the explanatory

power of statistical models based on herbarium records to the

explanatory power of independently constructed models based on

repeated in situ phenological observations.

2.3 | Azimuthal date corrections

The collection date of each herbarium specimen was converted into a

day of year (DOY) value from 1 (January 1) to 366 (December 31 on a

leap year). However, DOY values exhibit an artificial discontinuity
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between December 31 (DOY 365 or 366) of 1 year and January 1

(DOY 1) of the next. This discontinuity makes it problematic to treat

DOY as a continuous variable when considering species in which indi-

viduals flower both before and after January 1 in different locations or

years. In order to eliminate this discontinuity, we converted DOY into

a circular variable (Batschelet, 1981; Jammalamadakka & Sengupta,

2001) by rescaling the DOY into an azimuth (A), using Equation 1a, or

Equation 1b in the case of leap years.

A ¼ DOY � 360=365 (1)

A ¼ DOY � 360=366 (2)

The coordinates of the endpoint of a vector with azimuth (A)

and length 1, beginning at the origin point (0,0), were then calculated

using the formula [x = cos(A) and y = sin(A)]. The mean position of

these coordinates was then calculated across all specimens of each

species. The mean azimuth (or angular direction) from the origin

point (0,0) to this mean position was then calculated for each species

and rescaled into a DOY value representing the mean FD of each

species across all climatic regions and all available years. Angular

deviations of each specimen's azimuth from its respective species’
mean azimuth were then calculated, with the direction of angular

rotation being enforced as the direction of rotation that required the

smallest angular change. The angular difference of each specimen

from its species‐wide mean was rescaled into a measure of depar-

ture in DOY (ΔDOY), with the direction of the difference (i.e.,

toward earlier or later DOY) being determined by the direction of

angular rotation. The adjusted DOY (hereafter referred to simply as

DOY) of collection for each specimen was then computed by adding

its ΔDOY to its species‐wide mean flowering DOY.

Among specimens for which the resulting collection date was

prior to January 1 (DOY < 1) but the mean DOY was after January

1, the respective year of collection was converted to year + 1 in

order to place it in the same year as the flowering season to which

it was closest (i.e., a specimen of a species with an overall mean FD

of January 15 that was collected on December 23, 2007, would be

converted to DOY = −23, year 2008). Similarly, in cases where a

specimen was collected after December 31 (DOY < 365, or 366 in

leap years) but the mean DOY for the species was prior to Decem-

ber 31, the respective year of collection was converted to year – 1

(i.e., a specimen of a species with an overall mean FD of December

10 that was collected on January 5, 2006, would be converted to

DOY = 370, year 2005).

2.4 | Climate data

Climate parameters included in this study consisted of a variety of

annual and seasonal climate metrics across multiple periods of refer-

ence. Seasonal data in this study consisted of mean conditions dur-

ing the autumn of the previous year (from October 1 to December

31), and from the winter (January 1 – March 31), spring (April 1 –
June 30), summer (July 1 – September 30), and autumn (October 1 –
December 31) of the year in which flowering occurred. In order to

ensure that phenological behavior was modeled using only condi-

tions prior to flowering for each species, we also calculated the

mean FD for each species across all years and collection locations,

and excluded from the phenoclimate models those climate variables

representing all seasons that fell after the mean FD for that species.

All climate data used in this study were estimated using the Cli-

mateNA v5.21 software package, available at http://tinyurl.com/

F IGURE 1 Distribution of herbarium specimens and repeated in situ observations of Baccharis pilularis, Cornus florida, Eriogonum
fasciculatum, Larrea tridentata, Quercus agrifolia, Quercus rubra, and Symphoricarpos albus throughout North America
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ClimateNA (Wang et al., 2016), which produces estimates of local

monthly, seasonal, and annual climate conditions at 4 km resolution.

Climate parameters used to characterize conditions within each sea-

son included the number of frost‐free days (NFFD) mean daily mini-

mum temperatures (TMIN), mean daily maximum temperatures

(TMAX), total precipitation (PPT), and total precipitation as snow

(PAS) within each season. In addition, the date on which the frost‐
free period began (BFFP), the mean temperature of the coldest

month (i.e., January or February) in the year of flowering (i.e., the

calendar year in which flowering occurred), as well as the date on

which the previous year's frost‐free period ended (EFFP), the total

annual precipitation (TAP) throughout the previous year, and the

mean annual temperature (MAT) of the previous year were consid-

ered as aspects of annual climate. In locations that typically do not

experience freezes, the date on which the previous year's frost‐free
period ended was considered to be December 31, and the date on

which the frost‐free period began was considered to be January 1.

2.5 | Modeling reproductive phenology

In order to model the flowering phenology of each species, multiple

regression methods have commonly been used to construct predictive

models. Stepwise regression, in particular, represents a frequently

used framework for constructing phenological models, particularly

when the goal is to select which climate parameters to include in such

models (Doi & Katano, 2007; Fraga et al., 2016; Gerst, Rossington, &

Mazer, 2017; Hart, Salick, & Xu, 2014; Mazer, Gerst, Matthews, &

Evenden, 2015; Richardson, Chaney, Shaw, & Still, 2017; Roy &

Sparks, 2000; Sparks & Carey, 1995; Sparks, Jeffree, & Jeffree, 2000;

Szabó, 2016; Tryjanowski, Kuźniak, & Sparks, 2005). In order to avoid

collinearity, however, stepwise regression techniques often eliminate

variables that are highly correlated. This may reduce the accuracy of

the resulting phenological models and result in distorted perceptions

of the importance of the parameters involved if important information

is discarded. As many of the climate parameters that were considered

in this study are highly correlated (Supporting Information Table S1),

we instead use an alternative regression method, elastic net regular-

ization, which is better suited to cases in which explanatory factors

are strongly collinear.

2.6 | Elastic net regularization

Elastic net regularization is an increasingly popular method for multi-

ple regression that is often used in place of stepwise linear regres-

sion techniques, particularly in cases where the number of

explanatory factors is high or where significant collinearity among

explanatory factors exists (De Mol et al., 2009; Zou & Zhang, 2009).

Instead of selecting variables in a binary fashion, as with forward

selection or backward elimination regression techniques, elastic net

regularization enforces parsimony through the use of two penalty

terms: the sum of the absolute value of all parameter coefficients

(L1, Equation 2a) and the sum of all parameter coefficients squared

(L2, Equation 2b, Zou & Hastie, 2005).

L1 ¼ ∑jjβjj (3)

L2 ¼ ∑jjβ2jj (4)

The degree to which model complexity is penalized is controlled

by a penalty weighting term (α), while the relative weighting of L1

vs. L2 penalties is controlled by a relative weighting term (ρ). The

overall model is then identified as the model for which the sum of

the SSE (sum of squared errors) and the L1 and L2 penalties, modi-

fied by the two weighting terms, is minimized (C; Equation 5).

C ¼ SSEþ αρjjL1jj þ αð1� ρÞjjL2jjÞ (5)

In combination, L1 and L2 penalize model complexity and force

the coefficients of unimportant parameters to zero, as does lasso

regression (Tibshirani, 2011). The combination of L1 and L2 penaliza-

tion also provides several advantages over OLS regression, particu-

larly in cases where potential explanatory factors are highly

correlated. In OLS‐based regression methods, a high degree of

collinearity often leads to large increases in the variance of coeffi-

cients as well as in their standard errors, making the resulting models

unstable and therefore unreliable (Berry & Feldman, 2011). In elastic

net regularization, however, the L2 penalty term prevents the model

from generating extreme coefficients when confronted with highly

collinear parameters. Instead, models constructed using this method

typically exhibit a “grouping effect” (Zou & Hastie, 2005), in which

the weights of the coefficients are distributed across all of the colli-

near parameters. As a result, models constructed through elastic net

regularization typically remain highly stable when confronted by col-

linear parameters, while also avoiding the problems associated with

variance inflation of parameter coefficients that occurs when con-

ducting OLS‐based regressions on datasets with high collinearity (De

Mol et al., 2009; Raschkla, 2017). Given that potentially important

climate parameters are often highly collinear (Rawal et al., 2015;

Supporting Information Table S1), this makes elastic net regulariza-

tion a better tool for the construction of, and variable selection

among, phenoclimatic models.

2.7 | Constructing phenoclimate models

For each of the 2,468 plant taxa for which sufficient herbarium data

were available, phenological models were constructed using the elas-

ticCV class contained within Scikit‐Learn 0.814‐4 in python in order

to predict the FD of each species using local climate data. This

method represents an internally cross‐validated version of the elastic

net regularization methods developed by Zou and Hastie (2005), and

selects the optimal balance both between L1 and L2 penalization (ρ)

and between the sum of squared standard errors (SSE) and com-

bined L1 and L2 (α) in order to minimize both the standard error and

model complexity.

For each species, this method conducted iterative fitting along a

regularization path, using 100 values of α and 22 values of ρ (ranging

from 0.01 to 0.99) in order to determine the optimal balance

between minimizing error vs. model complexity and between L1 and
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L2 penalization. The optimal model coefficients were then selected

using 25‐fold cross‐validation. For the seven species for which suffi-

cient in situ data were also available from the USA‐NPN database to

model FD, the same method was used to develop models using

in situ observations. The R2 values of these models (i.e., their

explanatory power) were then compared to those based on the

herbarium‐based data representing the same seven species.

2.8 | Evaluating the predictive capacity of models
derived from herbarium collections and in situ
observations

The R2 value for each model is the mean of the 25 iterations in

which it was trained and tested using separate datasets; this value

was considered to represent the capacity of each phenological model

to predict the timing of FD for a given species under novel condi-

tions that were not included in the training data set. Using the seven

species for which sufficient data were available to construct models

using both herbarium collections and in situ phenological observa-

tions, we then compared the predictive capacity (i.e., the R2 values)

of the models constructed using herbarium records vs. in situ obser-

vations using paired sample t tests in SPSS.

2.9 | Relationship of sampling intensity to model
complexity and to predictive capacity

In order to determine whether the number of specimens analyzed

for each species influenced the complexity or predictive power of

the resulting phenological model, we conducted two linear regres-

sions among all species. In each regression, the number of herbarium

specimens was the independent variable and the dependent variable

was either (a) the number of parameters with nonzero coefficients in

each phenological model (which we considered to be an estimate of

its complexity) or (b) the predictive capacity (as measured by the

cross‐validated R2) of each phenological model.

2.10 | Importance of each type of climate
parameter in predicting flowering phenology

For each species represented by herbarium data, the importance of

each type of climate parameter (i.e., TMAX, TMIN, NFFD, BFFP,

EFFP, MAT, MCMT, PPT, PAS, or TAP) for predicting FD was esti-

mated based on the R2 values of parameter‐specific phenological

models (Table 1). These models were constructed using a series of

multiple regressions in which only those variables associated with a

given type of climate parameter (e.g., TMAX, etc.) were included as

independent variables in a given model; in all cases, the DOY of col-

lection was the dependent variable. In the case of climate parameter

types that were measured across multiple reference periods, the

value of that of parameter in each time period within which it was

measured was included in the model as an independent variable,

with the exception of season‐specific variables (i.e., values for the

selected type of climate parameter within each season, such as

TMAXwinter, TMAXspring, etc.) that were not retained in the overall

model. For example, the assessment of each type of parameter (e.g.,

TMAX) included up to five distinct variables: the mean value during

the autumn of the previous year, and the mean value during the

winter, spring, summer, and autumn of the year in which flowering

occurred. For each species, the conditions during any season(s) expe-

rienced after its mean flowering date were always excluded. Using

elastic net regularization, each regression was conducted using 25‐
fold cross‐validation, and the overall predictive power of each model

was calculated using the mean R2 of all iterations.

Prior to testing for significant differences among the 10 distinct

types of climate parameters listed above with respect to the mean

R2 values of the models that included them, we first tested for the

homogeneity of variances of the R2 values using Levene's test. As

variances in the R2 values of models constructed using each parame-

ter type were found to be unequal (F9,24670 = 591.013, p < 0.01),

the mean R2 of models constructed using each of the 10 types of

climate parameters evaluated in this study were then compared fol-

lowing a nonparametric ANOVA (with type of climate parameter as

the independent variable) using Tamhane's T2 tests in SPSS. These

parameter‐specific models typically exhibited lower explanatory

power than the overall models. This reduction in explanatory power

is intentional, however, as these models were used to evaluate the

relative importance of each type of climate parameter in explaining

the observed phenological variation.

In order to evaluate the possibility that some parameters might

be retained only rarely in the phenoclimate models, but have high

explanatory power when included (such as the potential for precipi-

tation as snow to be highly important for species inhabiting locations

TABLE 1 Types and purposes of regression models tested in this study

Model type Climate parameters Purpose Example

Overall All Prediction of FD by all potential climate parameters BFFP + TmaxWinter + TmaxSpring +

TmaxSummer + TminWinter + TminSpring +

TminSummer …

Parameter‐
specific

All season‐specific values of a

single type of climate

parameter

Determine the predictive power of each climate

parameter on FD, independent of season

TmaxWinter + TmaxSpring + TmaxSummer

Reference

period‐
specific

All climate parameters within a

given season

Determine the predictive power of season‐specific climate

parameters on FD, independent of individual climate

parameters

TmaxWinter + TminWinter + NFFDWinter …
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with high snowfall, but irrelevant in areas with little to no snowfall),

we also calculated the number of species in which a given parameter

exhibited a partial R2 of more than 0.5, more than 0.3, more than

0.2, and more than 0.1.

2.11 | Importance of climate conditions during
different reference periods

For each species represented by herbarium data, we constructed

seven season‐specific phenological models using elastic net regular-

ization. Excluding those parameters that were not retained in the

overall model, each model potentially included all types of climate

parameter within one of the following reference periods: the autumn

of the prior year; the winter, spring, summer, or autumn of the year

in which flowering occurred; or, for those parameters that are inher-

ently annual rather than seasonal in nature, the year in which flower-

ing occurred or the year prior to flowering (Table 1).

As with previous models, each regression was conducted using

25‐fold cross‐validation, and the predictive power of each model was

estimated as the mean R2 of all iterations. The homogeneity of vari-

ances of the R2 values among the seven distinct reference periods

listed above was tested using Levene's test. As the variances in the R2

values were unequal among reference periods (F6,14802 = 1217.7,

p < 0.01), the mean R2 values were then compared following a non-

parametric ANOVA (with reference period as the independent vari-

able) using Tamhane's T2 tests in SPSS. In order to determine the

reference period that exhibited the greatest predictive power for the

greatest number of species, we also calculated the number of species

in which conditions during each reference period exhibited a partial R2

of more than 0.5, more than 0.3, more than 0.2, and more than 0.1.

3 | RESULTS AND DISCUSSION

Models of flowering phenology can be produced using digitized

herbarium records across a wide array of taxa, as phenological models

of FD derived from herbarium data explained an average of 27% of

the variance in FD among observations not used in model construc-

tion, with models for 1,514 taxa explaining over 20% of observed vari-

ance, and models for 494 taxa explaining <10% of observed variance

(Figure 2). The predictions of FD based on herbarium specimens were

as accurate as those produced based on in situ observations; no signif-

icant difference was detected in the mean explanatory power (R2) of

phenoclimatic models constructed using herbarium records vs. in situ

observations (t = −0.765, df = 6, p = 0.474, Figure 3, Supporting

Information Table S3). Similarly, the complexity of the phenological

models constructed using herbarium vs. in situ observations did not

differ significantly, as represented by the number of variables selected

for model inclusion (t = −0.525, df = 6, p = 0.619). Further, phenologi-

cal models constructed using herbarium and in situ observations

selected or excluded the same climate parameters 79% of the time on

average (Supporting Information Table S4). No significant differences

in the mean values of the regression coefficients for each climate

parameter were detected between the phenoclimate models

constructed using herbarium‐derived vs. repeated in situ phenological

observations (Supporting Information Table S5).

The number of observations required to construct such models

also appears to be comparatively small, as extremely low correlations

were detected between sample size and model accuracy when con-

sidering species represented by 100 or more herbarium specimens

(R2 ≤ 0.01, df = 2,467, p < 0.01, Figure 4a). Similarly, the relation-

ship between sample size and model complexity was also very low

(R2 = 0.03, df = 2,467, p < 0.01, Figure 4b), indicating that limited

specimen availability does not overly restrict the complexity of the

resulting models. Herbarium‐based phenological models incorporated

a mean of 9.38 climate parameters (Figure 5a), and increased model

F IGURE 2 Distribution of cross‐validated R2 values of all
phenoclimatic models derived from herbarium data using elastic net
regularization (n = 2,468 taxa, Table S2)

F IGURE 3 Cross‐validated R2 values among phenoclimatic
models independently constructed using digital records of herbarium
collections and in situ estimates of FD provided by the USA
National Phenology Network's database (NPN). Vertical black lines
indicate standard errors. Each set of phenoclimate models evaluated
seven distinct taxa
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complexity was associated with moderate increases in predictive

power (R2 = 0.23, df = 2,467, p < 0.01; Figure 5b). Variation among

species in the mean temperature of collection sites, the breadth of

their climate envelope, the mean latitude of the collection sites, or

the number of years across which they were observed played a mini-

mal role in determining the predictive power of the resulting pheno-

climate models (R2 < 0.03 in all cases, Supporting Information

Table S6).

3.1 | Importance of climate parameters to the
prediction of FD

Parameter‐specific climatic models differed significantly with respect

to their mean explanatory power (Supporting Information Table S7).

Among phenoclimate models that included only a single type of cli-

mate parameter, significant differences were detected in the mean

R2 value of models corresponding to different types of climate

parameter (F = 315.51, df1 = 9, df2 = 24,679, p < 0.01, Supporting

Information Table S7). Similarly, models corresponding to different

reference periods differed significantly with respect to their mean

explanatory power (F = 848.00, df1 = 5, df2 = 14,807, p < 0.01, Sup-

porting Information Table S8).

Temperature‐related parameters were the primary contributors

to the predictive capacity of phenoclimatic models. Of these, the

most powerful predictors of FD across the 2,468 taxa evaluated in

this study were the number of frost‐free days (NFFD), the mean

maximum temperatures (TMAX), and the quantity of precipitation

that fell as snow in the seasons preceding flowering (PAS). NFFD

F IGURE 4 Sensitivity of model R2 and model complexity to
sample size, estimated from the linear relationship between the
number of digital herbarium records available for each species and
(a) the predictive power (represented by cross‐validated R2 values) or
(b) the complexity (measured as the number of climate parameters
with nonzero coefficients) of the associated phenoclimatic model for
that species. Points represent the explanatory power and model
complexity of the phenoclimatic models associated with each
species. Each species is represented by one model (selected by the
elastic net regularization approach). Solid lines represent significant
linear relationships. n = 2,468 taxa in both analyses

F IGURE 5 Summary of elastic net regularization models across all
species and selected models. Frequency distribution of the number of
climate parameters with nonzero coefficients among all phenoclimatic
models constructed from digital records of herbarium collections (a);
relationship between the explanatory power (represented by cross‐
validated R2) of phenoclimatic models for each species and the
number of climate parameters with nonzero coefficients (b). Each
point represents the phenoclimate model that was developed for a
single taxon. The solid line represents the linear relationship between
the predictive power of each model and the number of explanatory
variables included in it. n = 2,468 taxa in both analyses

8 | PARK AND MAZER



explained a mean of 14% of the variance in FD across species (Fig-

ure 6a, Table 2). TMAX explained 12% of the variance in FD, and

PAS explained 11% of observed variance in FD. By comparison,

TMIN, which has commonly been used in phenoclimate models (Ber-

tin, 2015; Mohandass, Zhao, Xia, Campbell, & Li, 2015; Munson &

Long, 2017; Munson & Sher, 2015; Rawal et al., 2015; Robbirt,

Davy, Hutchings, & Roberts, 2011), exhibited less than a third of the

predictive power of NFFD on average (Figures 6a, 7a and Table 2).

NFFD and TMAX, which were highly correlated, were likely the best

predictors due to the fact that flowering time across many species

has been associated with spring warming. PAS, on the other hand,

may be a reliable proxy for the date of snow melt, which has been

shown to be highly tied to flowering times for some species that

occupy habitats with substantial winter snow cover (Inouye &

McGuire, 1991).

When winter‐, spring‐, and summer‐flowering species were

examined separately, three patterns emerged. First, the relative

importance of each type of climatic parameter and season was lar-

gely similar among spring and summer‐flowering species. For these

species, Tmax and NFFD are the variables that most strongly affect

flowering date. Second, the models applied to spring‐flowering spe-

cies exhibited higher predictive power than those applied to sum-

mer‐flowering species (Supporting Information Figure S2 and S3).

Third, winter‐flowering species exhibited more similar R2 values

F IGURE 6 Mean predictive power (R2) associated with each type of climate parameter (a), and with conditions during each reference
period (b) in predicting the FD of all taxa included in this analysis and represented by herbarium records (n = 2,468 species), as derived from
species‐specific linear regression analyses conducted using 25‐fold cross‐validation. Climate parameters consisted of maximum mean seasonal
temperature (TMAX), minimum mean seasonal temperature (TMIN), seasonal number of frost‐free days (NFFD), date of the beginning of the
annual frost‐free period (BFFP), date of the end of the annual frost‐free period during the prior year (EFFP), mean annual temperature of the
prior year (MAT), mean temperature of the coldest month (MCMT), seasonal total precipitation (PPT), seasonal precipitation as snow (PAS), and
total annual precipitation of the previous year (TAP). Vertical black lines indicate standard errors of the associated mean. Within each panel,
letters that are shared between bars indicate groups that do not differ significantly with respect to their mean R2 value, based on Tamhane's
T2 tests

TABLE 2 Mean predictive power (R2) associated with each type
of climate parameter and reference period

Mean predictive
power (R2)

Standard deviation
of predictive power

Parameter type

TMAX 0.12 0.17

TMIN 0.04 0.09

NFFD 0.14 0.16

BFFP 0.10 0.14

EFFP 0.06 0.11

MAT 0.03 0.10

MCMT 0.02 0.06

PPT 0.09 0.08

PAS 0.11 0.12

TAP 0.05 0.07

Reference period

Prior autumn 0.10 0.13

Winter 0.14 0.14

Spring 0.19 0.18

Summer 0.04 0.08

Autumn 0.01 0.01

Annual 0.17 0.15
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across all climate parameters and seasons than the spring‐ and sum-

mer‐flowering species (Supporting Information Figure S2 and S3).

Interestingly, a survey of phenological studies published over the

past 3 years (representing 35 individual studies, Supporting Informa-

tion Table S9) found no cases in which the number of frost‐free days

was included in the construction of phenological models, indicating

that this parameter has largely been overlooked. Similarly, this sur-

vey detected no papers that included PAS in the phenological mod-

els. Snow melt dates, which likely represent a similar aspect of

climate, have been used in previous examinations of phenology in

alpine (Wipf, Stoeckli, & Bebi, 2009), subalpine or montane (Dunne,

Harte, & Taylor, 2003; Forrest, Inouye, & Thompson, 2010; Inouye,

2008; Inouye & McGuire, 1991; Price & Waser, 1998), and arctic

environments (Bjorkman, Elmendorf, Beamish, Vellend, & Henry,

2015; Cooper, Dullinger, & Semenchuk, 2011; Mortensen, Schmidt,

Høye, Damgaard, & Forchhammer, 2016; Wheeler, Høye, Schmidt,

Svenning, & Forchhammer, 2015). This study, however, indicates

that PAS should be considered in phenological models of taxa that

occupy a much wider range of climate regimes. Increases in NFFD

and TMAX were typically associated with advances in flowering,

while increases in PAS were associated with delays in flowering

(Supporting Information Table S10).

3.2 | Importance of reference period to the
prediction of FD

When considered across all species, climate conditions during spring

exhibited higher mean explanatory power than conditions during any

other season, explaining a mean of 18.8% of the observed variance

in FD (Figure 6a). Annual climate conditions explained a mean of

17% of the variance in FD, while conditions during the preceding

winter explained only 14% of the variance on average, and condi-

tions during the prior autumn explained a mean of 10% of the

variance. Thus, it appears that annual or winter conditions are

weaker predictors of FD than conditions during spring (Figures 6b

and 7b). Climate conditions during spring were also found to exhibit

higher explanatory power than any other reference period among

both spring‐ and summer‐flowering species. Among winter‐flowering

species, however, climate conditions during the prior year were

found to exhibit the highest explanatory power (Supporting Informa-

tion Figure S3).

4 | CONCLUSIONS

Collectively, this study demonstrates that herbarium datasets can be

used to produce powerful models for the prediction of flowering

date across a vast array of species and that the sample size required

to develop phenological models is easily achieved. Further, this study

demonstrates that elastic net regression is a powerful tool for the

design of phenoclimatic models, and that some of the most impor-

tant climate parameters for the prediction of phenological variation,

such as the number of frost‐free days, the quantity of snowfall, and

the date of the beginning of the frost‐free period, are in fact climate

parameters that have largely been overlooked in the construction of

phenoclimate models. This study also demonstrates a scalable

method for modeling phenoclimate variation across a large number

of species and represents a powerful new approach for assessing

the relationship between recent climatic conditions and flowering

phenology. Future work will leverage these methods to evaluate

whether systematic differences exist in the phenological responses

of angiosperm taxa that exhibit different growth forms, to evaluate

the degree of phylogenetic conservatism in the phenological respon-

siveness of angiosperm taxa, to measure the degree to which the

timing of phenological events has changed over time, and to evalu-

ate the degree to which future climate changes are likely to disrupt

or enhance synchronies among historically coflowering taxa.

F IGURE 7 Percentage of the 2,468
plant taxa among which the predictive
power (R2) of each species’ parameter‐
specific (a) or reference period‐specific (b)
model exceeded 0.1, 0.2, 0.3, or 0.5 for
each type of climate parameter. Climate
parameters consisted of mean maximum
seasonal temperature (TMAX), minimum
mean seasonal temperature (TMIN),
seasonal number of frost‐free days (NFFD),
date of the beginning of the annual frost‐
free period (BFFP), date of the end of the
annual frost‐free period during the prior
year (EFFP), mean annual temperature of
the prior year (MAT), mean temperature of
the coldest month (MCMT), seasonal total
precipitation (PPT), seasonal precipitation
as snow (PAS), and total annual
precipitation of the previous year (TAP)

10 | PARK AND MAZER



ACKNOWLEDGEMENTS

This work was supported by NSF DEB‐1556768 (to PIs Mazer and

Park). All collection data used in this study were drawn from partici-

pating institutions of the Consortium of California Herbaria (uc-

jeps.berkeley.edu/consortium/), SEINet (http://swbiodiversity.org/se

inet/), the SERNEC Data Portal (http//:sernecportal.org/portal/in-

dex.php), the Consortium of Midwest Herbaria (http://midwestherba

ria.org/), the Intermountain Regional Herbarium Network, (http://in

termountainbiota.org), the North American Network of Small Her-

baria (http://nansh.org/), the Northern Great Plains Regional

Herbarium Network (http://ngpherbaria.org), and the Consortium of

Pacific Northwest Herbaria (http://pnwherbaria.org/), and was

accessed on March 14, 2017. A complete list of contributing her-

baria is included in the supporting information.

ORCID

Isaac W. Park http://orcid.org/0000-0001-5539-1641

Susan J. Mazer http://orcid.org/0000-0001-8080-388X

REFERENCES

Abu‐Asab, M. S., Peterson, P. M., Shetler, S. G., & Orli, S. S. (2001). Ear-

lier plant flowering in spring as a response to global warming in the

Washington, DC, area. Biodiversity and Conservation, 10, 597–612.
https://doi.org/10.1023/A:1016667125469

Batschelet, E. (1981). Circular statistics in biology. London, UK: Academic

Press.

Berry, W. D., & Feldman, S. (2011). Multicollinearity quantitative applica-

tions in the social sciences: Multiple regression in practice (pp. 38–51).
Thousand Oaks, CA: SAGE Publications Ltd.

Bertin, R. I. (2015). Climate change and flowering phenology in Worces-

ter County, Massachusetts. International Journal of Plant Sciences, 176

(2), 107–119. https://doi.org/doi:10.1086/679619
Bertin, R. I., Searcy, K. B., Hickler, M. G., & Motzkin, G. (2017). Climate

change and flowering phenology in Franklin county, Massachusetts.

Journal of the Torrey Botanical Society, 144(2), 153–169. https://doi.
org/10.3159/TORREY-D-16-00019R2

Bjorkman, A. D., Elmendorf, S. C., Beamish, A. L., Vellend, M., & Henry,

G. H. R. (2015). Contrasting effects of warming and increased snow-

fall on Arctic tundra plant phenology over the past two decades. Glo-

bal Change Biology, 21(12), 4651–4661. https://doi.org/10.1111/gcb.
13051

Borchert, R., Robertson, K., Schwartz, M. D., & Williams‐Linera, G. (2005).
Phenology of temperate trees in tropical climates. International Jour-

nal of Biometeorology, 50, 57–65. https://doi.org/10.1007/s00484-

005-0261-7

Boulter, S. L., Kitching, R. L., & Howlett, B. G. (2006). Family, visitors and

the weather: Patterns of flowering in tropical rainforests of northern

Australia. Journal of Ecology, 94(2), 369–382. https://doi.org/10.

1111/j.1365-2745.2005.01084.x

Bowers, J. E. (2007). Has climatic warming altered spring flowering date of

Sonoran desert shrubs? The Southwestern Naturalist, 52(3), 347–355.
https://doi.org/10.1894/0038-4909(2007)52[347:HCWASF]2.0.CO;2

Boyle, B., Hopkins, N., Lu, Z., Garay, J. A. R., Mozzherin, D., Rees, T., …
Enquist, B. J. (2013). The taxonomic name resolution service: An

online tool for automated standardization of plant names. BMC Bioin-

formatics, 14, 16. https://doi.org/10.1186/1471-2105-14-16

Cook, B. I., Cook, E. R., Huth, P. C., Thompson, J. E., Forster, A., & Smiley,

D. (2007). A cross‐taxa phenological dataset from Mohonk Lake, NY

and its relationship to climate. International Journal of Climatology, 28,

1369–1383.
Cooper, E. J., Dullinger, S., & Semenchuk, P. (2011). Late snowmelt

delays plant development and results in lower reproductive success

in the High Arctic. Plant Science, 180(1), 157–167. https://doi.org/d
oi: 10.1016/j.plantsci.2010.09.005

Daru, B. H., Park, D. S., Primack, R. B., Willis, C. G., Barrington, D. S.,

Whitfeld, T. J. S., … Davis, C. C. (2017). Widespread sampling biases

in herbaria revealed from large‐scale digitization. New Phytologist,

217, 939–955. https://doi.org/10.1111/nph.14855
De Mol, C., De Vito, E., & Rosasco, L. (2009). Elastic‐net regularization in

learning theory. Journal of Complexity, 25(2), 201–230. https://doi.

org/doi: 10.1016/j.jco.2009.01.002

Doi, H., & Katano, I. (2007). Phenological timings of leaf budburst with

climate change in Japan. Agricultural and Forest Meteorology, 148,

512–516.
Dunne, J. A., Harte, J., & Taylor, K. J. (2003). Subalpine meadow flower-

ing phenology responses to climate change: Integrating experimental

and gradient methods. Ecological Monographs, 73(1), 69–86. https://d
oi.org/10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2

Dunnell, K., & Travers, S. (2011). Shifts in the flowering phenology of the

northern Great Plains: Patterns over 100 years (Vol. 98).

Forrest, J., Inouye, D. W., & Thompson, J. D. (2010). Flowering phenol-

ogy in subalpine meadows: Does climate variation influence commu-

nity co‐flowering patters? Ecology, 91(2), 431–440. https://doi.org/

10.1890/09-0099.1

Fraga, H., Santos, J. A., Moutinho‐Pereira, J., Carlos, C., Silvestre, J., Eiras‐
Dias, J., … Malheiro, A. C. (2016). Statistical modelling of grapevine

phenology in Portuguese wine regions: Observed trends and climate

change projections. The Journal of Agricultural Science, 154(5), 795–
811. https://doi.org/10.1017/S0021859615000933

Gerst, K. L., Rossington, N. L., & Mazer, S. J. (2017). Phenological respon-

siveness to climate differs among four species of Quercus in North

America. Journal of Ecology, 105(6), 1610–1622. https://doi.org/10.

1111/1365-2745.12774

Hart, R., Salick, J., & Xu, J. (2014). Herbarium specimens show contrast-

ing phenological response to Himalayan climate. PNAS, 111(29),

10615–10619. https://doi.org/10.1073/pnas.1403376111
Hereford, J., Scmitt, J., & Ackerly, D. D. (2017). The seasonal climate

niche predicts phenology and distribution of an ephemeral annual

plant, Molluga verticillata. Journal of Ecology, 105, 1323–1334.
https://doi.org/10.1111/1365-2745.12739

Houle, G. (2007). Spring‐flowering herbaceous plant species of the decid-

uous forests of eastern Canada and 20th century climate warming.

Canadian Journal of Forest Research, 37(2), 505–512. https://doi.org/
10.1139/X06-239

Huang, J., & Hao, H. (2018). Detecting mismatches in the phenology of

cotton bollworm larvae and cotton flowering in response to climate

change. International Journal of Biometeorology, 62(8), 1507–1520.
https://doi.org/10.1007/s00484-018-1552-0

Inouye, D. W. (2008). Effects of climate change on phenology, frost dam-

age, and floral abundance of montane wildflowers. Ecology, 89(2),

353–362. https://doi.org/doi:10.1890/06-2128.1
Inouye, D. W., & McGuire, A. D. (1991). Effects of snowpack on timing

and abundance of flowering in Delphinium nelsonii (Ranunculaceae):

Implications for climate change. American Journal of Botany, 78(7),

997–1001. https://doi.org/10.1002/j.1537-2197.1991.tb14504.x
Inouye, D. W., Saavedra, F., & Lee‐Yang, W. (2003). Environmental influ-

ences on the phenology and abundance of flowering by Androsace

septentrionalis (Primulaceae). American Journal of Botany, 90(6), 905–
910. https://doi.org/10.3732/ajb.90.6.905

Jammalamadakka, S., & Sengupta, A. (2001). Topics in circular statistics.

River Edge, NJ: World Scientific. https://doi.org/10.1142/SMA

PARK AND MAZER | 11

http://swbiodiversity.org/seinet/
http://swbiodiversity.org/seinet/
http://midwestherbaria.org/
http://midwestherbaria.org/
http://intermountainbiota.org
http://intermountainbiota.org
http://nansh.org/
http://ngpherbaria.org
http://pnwherbaria.org/
http://orcid.org/0000-0001-5539-1641
http://orcid.org/0000-0001-5539-1641
http://orcid.org/0000-0001-5539-1641
http://orcid.org/0000-0001-8080-388X
http://orcid.org/0000-0001-8080-388X
http://orcid.org/0000-0001-8080-388X
https://doi.org/10.1023/A:1016667125469
https://doi.org/doi:10.1086/679619
https://doi.org/10.3159/TORREY-D-16-00019R2
https://doi.org/10.3159/TORREY-D-16-00019R2
https://doi.org/10.1111/gcb.13051
https://doi.org/10.1111/gcb.13051
https://doi.org/10.1007/s00484-005-0261-7
https://doi.org/10.1007/s00484-005-0261-7
https://doi.org/10.1111/j.1365-2745.2005.01084.x
https://doi.org/10.1111/j.1365-2745.2005.01084.x
https://doi.org/10.1894/0038-4909(2007)52[347:HCWASF]2.0.CO;2
https://doi.org/10.1186/1471-2105-14-16
https://doi.org/doi: 10.1016/j.plantsci.2010.09.005
https://doi.org/doi: 10.1016/j.plantsci.2010.09.005
https://doi.org/10.1111/nph.14855
https://doi.org/doi: 10.1016/j.jco.2009.01.002
https://doi.org/doi: 10.1016/j.jco.2009.01.002
https://doi.org/10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2
https://doi.org/10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2
https://doi.org/10.1890/09-0099.1
https://doi.org/10.1890/09-0099.1
https://doi.org/10.1017/S0021859615000933
https://doi.org/10.1111/1365-2745.12774
https://doi.org/10.1111/1365-2745.12774
https://doi.org/10.1073/pnas.1403376111
https://doi.org/10.1111/1365-2745.12739
https://doi.org/10.1139/X06-239
https://doi.org/10.1139/X06-239
https://doi.org/10.1007/s00484-018-1552-0
https://doi.org/doi:10.1890/06-2128.1
https://doi.org/10.1002/j.1537-2197.1991.tb14504.x
https://doi.org/10.3732/ajb.90.6.905
https://doi.org/10.1142/SMA


Jones, C. A., & Daehler, C. C. (2018). Herbarium specimens can reveal

impacts of climate change on plant phenology; a review of method-

sand applications. PeerJ, 6, e4576. https://doi.org/10.7717/peerj.

4576

Lavoie, C., & Lachance, D. (2006). A new herbarium‐based method for

reconstructing the phenology of plant species across large areas.

American Journal of Botany, 93(4), 512–516. https://doi.org/10.3732/
ajb.93.4.512

Leopold, A., & Jones, S. E. (1947). A phenological record for Sauk and

Dane Counties, Wisconsin, 1935‐1945. Ecological Monographs, 17(1),

81–122. https://doi.org/10.2307/1948614
Matthews, E. R., & Mazer, S. J. (2015). Historical changes in flowering

phenology are governed by temperature x precipitation interactions

in a widespread perennial herb in western North America. New Phy-

tologist, 210, 157–167.
Mazer, S. J., Gerst, K. L., Matthews, E. R., & Evenden, A. (2015). Species‐

specific phenological responses to winter temperature and precipita-

tion in a water‐limited ecosystem. Ecosphere, 6, 98. https://doi.org/

10.1890/ES14-00433.1

Miller‐Rushing, A. J., & Primack, R. B. (2008). Global warming and flower-

ing times in Thoreau's Concord: A community perspective. Ecology,

89(2), 332–341. https://doi.org/10.1890/07-0068.1
Miller‐Rushing, A. J., Primack, R. B., Primack, D., & Mukunda, S. (2006).

Photographs and herbarium specimens as tools to document pheno-

logical changes in response to global warming. American Journal of

Botany, 93(11), 1667–1674. https://doi.org/10.3732/ajb.93.11.1667
Mohandass, D., Zhao, J. L., Xia, Y. M., Campbell, M. J., & Li, Q. J. (2015).

Increasing temperature causes flowering onset time changes of alpine

ginger Roscoea in the central Himalayas. Journal of Asia‐Pacific Biodi-

versity, 8, 191–198. https://doi.org/10.1016/j.japb.2015.08.003
Mortensen, L. O., Schmidt, N. M., Høye, T. T., Damgaard, C., & Forch-

hammer, M. C. (2016). Analysis of trophic interactions reveals highly

plastic response to climate change in a tri‐trophic High‐Arctic ecosys-

tem. Polar Biology, 39(8), 1467–1478. https://doi.org/10.1007/

s00300-015-1872-z

Munson, S. M., & Long, A. L. (2017). Climate drives shifts in grass repro-

ductive phenology across the western USA. New Phytologist, 213(4),

1945–1955. https://doi.org/10.1111/nph.14327
Munson, S. M., & Sher, A. A. (2015). Long‐term shifts in the phenology

of rare and endemic Rocky Mountain plants. American Journal of Bot-

any, 102(8), 1268–1276. https://doi.org/10.3732/ajb.1500156
Park, I. (2014). Impacts of differing community composition on flowering

phenology throughout warm temperate, cool temperate and xeric

environments. Global Ecology and Biogeography, 23(7), 789–801.
https://doi.org/10.1111/geb.12163

Park, I. (2016). Timing the bloom season: A novel approach to evaluating

reproductive phenology across distinct regional flora. Landscape Ecol-

ogy, 31, 1567–1579. https://doi.org/10.1007/s10980-016-0339-0
Price, M. V., & Waser, N. M. (1998). Effects of experimental warming on

plant reproductive phenology in a subalpine meadow. Ecology, 79(4),

1261–1271. https://doi.org/10.1890/0012-9658(1998)079[1261:

EOEWOP]2.0.CO;2

Primack, D., Imbres, C., Primack, R. B., & Miller‐Rushing, A. J. (2004). Her-

barium specimens demonstrate earlier flowering times in response to

warming in Boston. American Journal of Botany, 91(8), 1260–1264.
https://doi.org/10.3732/ajb.91.8.1260

Raschkla, S. (2017). Python machine learning. Birmingham, UK: Packt Pub-

lishing.

Rawal, D. S., Kasel, S., Keatley, M. R., & Nitschke, C. R. (2015). Herbarium

records identify sensitivity of flowering phenology of eucalypts to cli-

mate: Implications for species response to climate change. Austral

Ecology, 40, 117–125. https://doi.org/10.1111/aec.12183

Reddy, G. C. P., Shi, P., Hui, C., Cheng, X., Fang, O., & Ge, F. (2015). The

seesaw effect of winter temperature change on the recruitment of

cotton bollwors Helicoverpa armigera through mismatched phenology.

Ecology and Evolution, 5(23), 5652–5661. https://doi.org/10.1002/ece
3.1829

Richardson, B. A., Chaney, L., Shaw, N., & Still, S. M. (2017). Will pheno-

typic plasticity affecting flowering phenology keep pace with climate

change? Global Change Biology, 23, 2499–2508. https://doi.org/10.

1111/gcb.13532

Robbirt, K. M., Davy, A. J., Hutchings, M. J., & Roberts, D. L. (2011). Vali-

dation of biological collections as a source of phenological data for

use in climate change studies: A case study with the orchid Ophrys

sphegodes. Journal of Ecology, 99(1), 235–241. https://doi.org/10.

1111/j.1365-2745.2010.01727.x

Roy, D. B., & Sparks, T. H. (2000). Phenology of British butterflies and

climate change. Global Change Biology, 6, 407–416. https://doi.org/
10.1046/j.1365-2486.2000.00322.x

Sahagun‐Godinez, E. (1996). Trends in the phenology of flowering in the

orchidaceae of western Mexico. Biotropica, 28(1), 130–136. https://d
oi.org/10.2307/2388778

Schenk, M., Krauss, J., & Holzschuh, A. (2017). Desynchronizations in

bee‐plant interactions cause severe fitness losses in solitary bees.

Journal of Animal Ecology, 87(1), 139–149.
Schwartz, M. D., & Reiter, B. E. (2000). Changes in North American

spring. International Journal of Climatology, 20, 929–932. https://doi.
org/10.1002/(ISSN)1097-0088

Sparks, T. H., & Carey, P. D. (1995). The responses of species to climate

over two centuries: An analysis of the Marsham phenological record,

1736‐1947. Journal of Ecology, 83(2), 321–329. https://doi.org/10.

2307/2261570

Sparks, T. H., Jeffree, E. P., & Jeffree, C. E. (2000). An examination of the

relationship between flowering times and temperature at the national

scale using long term phenological records from the UK. International

Journal of Biometeorology, 44, 82–87. https://doi.org/10.1007/

s004840000049

Szabó, B. (2016). Flowering phenological changes in relation to climate

change in Hungary. International Journal of Biometeorology, 60(9),

1347–1356. https://doi.org/10.1007/s00484-015-1128-1
Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: A

retrospective. Journal of the Royal Statistical Society, 73(3), 273–282.
https://doi.org/10.1111/j.1467-9868.2011.00771.x

Tryjanowski, P., Kuźniak, S., & Sparks, T. H. (2005). What affects the

magnitude of change in first arrival dates of migrant birds. Journal of

Ornithology, 146, 200–205.
Wang, T., Hamann, A., Spittlehouse, D. L., & Carrol, C. (2016). Locally

downscaled and spatially customizable climate data for historical and

future periods for North America. PLoS ONE, 11, e0156720.

Wheeler, H. C., Høye, T. T., Schmidt, N. M., Svenning, J.‐C., & Forchham-

mer, M. C. (2015). Phenological mismatch with abiotic conditions—
implications for flowering in Arctic plants. Ecology, 96(3), 775–787.
https://doi.org/10.1890/14-0338.1

Willis, C. G., Ellwood, E. R., Primack, R. B., Davis, C. C., Pearson, K. D.,

Gallinat, A. S., & Soltis, P. S. (2017). Old plants, new tricks: Phenologi-

cal research using herbarium specimens. Trends in Ecology and Evolu-

tion, 32(7), 531–546. https://doi.org/10.1016/j.tree.2017.03.015
Wipf, S., Stoeckli, V., & Bebi, P. (2009). Winter climate change in alpine

tundra: Plant responses to changes in snow depth and snowmelt tim-

ing. Climatic Change, 94(1), 105–121. https://doi.org/10.1007/

s10584-009-9546-x

Zhao, T., & Schwartz, M. D. (2003). Examining the onset of spring in Wis-

consin. Climate Research, 24, 59–70. https://doi.org/10.3354/

cr024059

12 | PARK AND MAZER

https://doi.org/10.7717/peerj.4576
https://doi.org/10.7717/peerj.4576
https://doi.org/10.3732/ajb.93.4.512
https://doi.org/10.3732/ajb.93.4.512
https://doi.org/10.2307/1948614
https://doi.org/10.1890/ES14-00433.1
https://doi.org/10.1890/ES14-00433.1
https://doi.org/10.1890/07-0068.1
https://doi.org/10.3732/ajb.93.11.1667
https://doi.org/10.1016/j.japb.2015.08.003
https://doi.org/10.1007/s00300-015-1872-z
https://doi.org/10.1007/s00300-015-1872-z
https://doi.org/10.1111/nph.14327
https://doi.org/10.3732/ajb.1500156
https://doi.org/10.1111/geb.12163
https://doi.org/10.1007/s10980-016-0339-0
https://doi.org/10.1890/0012-9658(1998)079[1261:EOEWOP]2.0.CO;2
https://doi.org/10.1890/0012-9658(1998)079[1261:EOEWOP]2.0.CO;2
https://doi.org/10.3732/ajb.91.8.1260
https://doi.org/10.1111/aec.12183
https://doi.org/10.1002/ece3.1829
https://doi.org/10.1002/ece3.1829
https://doi.org/10.1111/gcb.13532
https://doi.org/10.1111/gcb.13532
https://doi.org/10.1111/j.1365-2745.2010.01727.x
https://doi.org/10.1111/j.1365-2745.2010.01727.x
https://doi.org/10.1046/j.1365-2486.2000.00322.x
https://doi.org/10.1046/j.1365-2486.2000.00322.x
https://doi.org/10.2307/2388778
https://doi.org/10.2307/2388778
https://doi.org/10.1002/(ISSN)1097-0088
https://doi.org/10.1002/(ISSN)1097-0088
https://doi.org/10.2307/2261570
https://doi.org/10.2307/2261570
https://doi.org/10.1007/s004840000049
https://doi.org/10.1007/s004840000049
https://doi.org/10.1007/s00484-015-1128-1
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1890/14-0338.1
https://doi.org/10.1016/j.tree.2017.03.015
https://doi.org/10.1007/s10584-009-9546-x
https://doi.org/10.1007/s10584-009-9546-x
https://doi.org/10.3354/cr024059
https://doi.org/10.3354/cr024059


Zou, H., & Hastie, T. (2005). Regularization and variable selection via the

elastic net. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 67(2), 301–320. https://doi.org/10.1111/j.1467-9868.

2005.00503.x

Zou, H., & Zhang, H. H. (2009). On the adaptive elastic‐net with a diverg-

ing number of parameters. Annals of Statistics, 37(4), 1733–1751.
https://doi.org/10.1214/08-AOS625

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Park IW, Mazer SJ. Overlooked

climate parameters best predict flowering onset: Assessing

phenological models using the elastic net. Glob Change Biol.

2018;00:1–13. https://doi.org/10.1111/gcb.14447

PARK AND MAZER | 13

https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1214/08-AOS625
https://doi.org/10.1111/gcb.14447



