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ABSTRACT
Native forests on islands throughout the global tropics face increas-
ing pressure from the human-driven expansion of coconut palm
(Cocos nucifera) planted for the purposes of coconut oil harvest.
Conversion from native forests to Cocosmonocultures leads to dras-
tic ecological consequences in island environments and alters terres-
trial andmarine food webs through a variety of cascading effects and
feedbacks. Despite the ecological significance and geographic range
of Cocos expansion, large-scale assessments of coconut proliferation
are still lacking due to the isolated nature of many islands where
Cocos is found. Remote sensing approaches are often used to moni-
tor forest composition at broad scales, but the small physical size of
most islands limits the use of many popular satellite sensors with
15–30 m resolution. The recent availability of very high resolution
(<5 m) satellite imagery facilitates novel assessment of this major
ecological pattern, but the increased resolution introduces proble-
matic ‘salt-and-pepper’ effects due to the heterogeneous nature of
palm frond canopies. This case study evaluates the effectiveness of
applying grey-level co-occurrence matrix (GLCM) textural features to
very high resolution (0.5–2 m) WorldView-2 imagery to resolve the
canopy heterogeneity problem and map the extent of Cocos spread
on 21 islets of Palmyra Atoll, a protected United States National
Wildlife Refuge in the Northern Line Islands. A random forest (RF)-
driven classification scheme differentiating between coconut palms,
native trees including Pisonia grandis, and endemic Scaevola sericea
shrubs achieved 97.0% overall accuracy and 98.4% producer’s and
user’s accuracies for the coconut palm class when trained on
a combined spectral and GLCM textural feature set. Classifications
restricted to the eight spectral bands ofWorldView-2 are not only less
accurate (89.4% overall accuracy), but also significantly worse at
identifying Cocos canopies (79.0% versus 98.0% accuracy when
GLCM textures are included). However, paring down the full set of
sixteen spectral and textural features to the three most important of
each type did not result in significant changes in accuracy. These
results demonstrate the effectiveness of a joint high-resolution tex-
tural and spectral approach for remotely quantifying the spread of
Cocos and its impacts on native tree communities throughout the
tropics, including remote island locations.
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1. Introduction

Native forests throughout the tropics face increasing pressure from anthropogenic land use
changes, climate change, and invasive species (Seddon et al. 2016; Hansen et al. 2013; Fine
2002). Native species on tropical islands are especially vulnerable to anthropogenic impacts
due to their geographic isolation and the typically small size of their island habitats (Fordham
and Brook 2010). Native plant communities have been cleared on many tropical Indo-Pacific
islands in favour of coconut palm plantations (Mueller-Dombois and Fosberg 1998), which
often provide a primary means of economic gain and subsistence in isolated island environ-
ments (Vergara and Nair 1985). The conversion of native island forests, often characterized by
broadleaf trees including Pisonia grandis and Tournefortia argentea, to Cocos monocultures
leads to drastic ecological consequences for atoll ecosystems. For instance, island flora may
face increased competition for freshwater (Krauss et al. 2015), nutrient depletion (Young et al.
2010), and increased seedling damage from litterfall (Young et al. 2014). Increasingly rare
native Pisonia forests also provide critical habitat for insects (Handler et al. 2007), reptiles
(Briggs et al. 2012), and seabird colonies (Kepler and Kepler 1994; Walker 1991), which help
create important phosphate soils that support many plant species on otherwise nutrient-poor
parent material (Fosberg 1957). Through a complex network of land-sea interactions, Cocos
invasions and the loss of native forests can profoundly alter not only terrestrial ecosystems but
also marine food webs (Young et al. 2017; McCauley et al. 2012).

While there is scattered documentation of Cocos proliferation in individual locations
(Mueller-Dombois and Fosberg 1998), a systematic, broader-scale assessment of the
intrusion of coconut palms into tropical island forests is needed to evaluate the magni-
tude and status of this widespread conservation issue – a difficult task given the
isolation and abundance of affected islands. Remote sensing techniques have been
used in similar forestry applications with much success (Huang and Asner 2009), and
some studies have developed methodologies to remotely map actively-managed palm
plantations in regions of tropical forest using their organized spatial arrangements (e.g.
Komba Mayossa et al. 2015; Koh et al. 2011). However, the satellite sensors most
commonly used for land cover studies typically feature 10 to 30-meter spatial resolu-
tions, which are too coarse to examine biological invasions in the heterogeneous
terrestrial environments found on the narrow land areas of most atolls. For instance,
the widest section of the vegetated rim of Palmyra Atoll, one of the Northern Line
Islands in the Pacific Ocean and the basis of this case study, is less than 450 m across.
Very high resolution (<5 m) satellite sensors have launched in growing numbers over the
past two decades, but they introduce spatial heterogeneity within forest types that
make pixel-based classification difficult – also known as the ‘salt-and-pepper effect’ (Yu
et al. 2006). When viewed through high-resolution datasets, land cover types often
exhibit visual heterogeneity that can confuse classification algorithms searching for
a land cover type’s distinct spectral signature. While low resolution sensors effectively
smooth out this variability, high resolution sensors inherently capture pixels with more
or less brightness than their neighbours within the same class (e.g. a palm frond pixel
with higher brightness than an adjacent shadowed pixel), hence the salt-and-pepper
analogy. For these reasons, few atolls’ terrestrial ecosystems have been analysed via
remote sensing, and large-scale estimates of tropical island forest change are lacking.
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The present study applies a combination of remote sensing techniques to overcome
these limitations and quantify the extent of Cocos and native forest habitats on a tropical
atoll. Specifically, we used very high resolution (0.5–2 m) multispectral data to capture
the small-scale spatial variability of the atoll’s vegetation, and grey-level co-occurrence
matrix (GLCM) textural analysis – a statistical approach to examine texture based on the
value and spatial relationship of pixels – to leverage the high spatial heterogeneity of
Cocos tree canopies to classify forest types. Recent studies have applied very high
resolution remote sensing data and GLCM analysis to land cover classification problems
with much success (Kaszta et al. 2016; Wang et al. 2016; Bricher et al. 2013; Murray,
Lucieer, and Williams 2010). Here, we apply this combination to an understudied tropical
island terrestrial ecosystem and then use a random forest (RF) algorithm to map the
distribution of Cocos and native trees. Random forest algorithms have seen growing
popularity in land cover classification studies due to their strong performance relative to
other classification algorithms (Le Louarn et al. 2017; Ma et al. 2017; Kaszta et al. 2016;
Shiraishi et al. 2014; Cutler et al. 2007) and their low sensitivity to problems like noisy
data and over-training on large forests (Rodriguez-Galiano et al. 2012a). Using Palmyra
Atoll, a remote US atoll located in the central Pacific Ocean, as a case study, we
demonstrate our approach’s ability to remotely map Cocos trees and native forests
with very high accuracy even in isolated and small island ecosystems.

2. Methods

2.1. Study area

Palmyra Atoll, a United States National Wildlife Refuge, is located in the central Pacific Ocean
at 05°53ʹN, 162°05ʹW, 1,700 km southwest of Hawaiʻi. While the geomorphology of the atoll
was extensively altered to accommodate a US military base from 1940 to 1945 (Collen,
Garton, and Gardner 2009), subsequent private ownership and Palmyra’s eventual designa-
tion as a National Wildlife Refuge in 2001 have allowed for the establishment of an extensive
forest ecosystem on the atoll (McCauley et al. 2012). Classified as a wet atoll (rainfall
> 4,000 mm/yr) (Mueller-Dombois and Fosberg 1998) with a coral-sand composition and
some freshwater retention in its belowground system (Hathaway, McEachern, and Fisher
2011), Palmyra hosts some of the region’s largest tracts of native broadleaf trees (P. grandis,
T. argentea, etc.) in addition to Cocos nucifera (Krauss et al. 2015). Today, Palmyra’s unin-
habited islets are dominated by two main forest types: forests primarily composed of tall
P. grandis trees with fringing T. argentea, and forests consisting almost completely of Cocos
monoculture, with different degrees of mixing between those two forest types (Young et al.
2010; Wester 1985). Additionally, some areas of the atoll contain dense growths of the native
shrub Scaevola sericea and the non-native tree Terminalia catappa (Lafferty et al. 2010;
Wegmann 2005). The native monocot screw pine Pandanus tectorius is also present in small
stands on Palmyra. As Palmyra’s protected forests contain many of the major tree species
found throughout the Indo-Pacific, Palmyra presents an excellent case study for the remote
detection of Cocos versus native broadleaf forests.

Humans drastically increased the abundance and range of Cocos on Palmyra Atoll in
the 19th and 20th centuries, though the earliest history of Cocos on Palmyra is uncertain
(Young et al. 2010; Wegmann 2009). As occurred on many other Indo-Pacific atolls,
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extensive native forests were cleared for military operations and commercial Cocos
plantations, which were active on Palmyra as recently as the 1970s (Hathaway,
McEachern, and Fisher 2011; Young et al. 2010; Krauss 1979; Dawson 1959; Rock
1916). In this study, the term ‘native forest’ refers to the prevalent non-Cocos native
tree species (namely P. grandis and T. argentea) that frequently compete with Cocos for
space and resources on small islands.

Fieldwork was conducted over several weeks during June and July of 2017. We
collected ground-validated points representing our three primary vegetation cover
types: (A) native forest, mostly consisting of broadleaf trees P. grandis and T. argentea;
(B) Cocos-dominated forest; and (C) Scaevola shrubs (see Figure 1). These three classes
are by far the dominant vegetation types present on the atoll, and combined represent
nearly its entire land area (Wegmann 2005). Because of T. catappa’s absence on most
islets and its structural similarities to P. grandis, it was included in the native forest class
of our analysis despite being non-native to Palmyra. The tree is only present on one of
the atoll’s islets and does not pose the conservation risk that Cocos does throughout the
region. The monocot P. tectorius, which is present in small stands intermixed with other
vegetation types, was not abundant enough to warrant its own class and is instead
included in the native forest class alongside the larger broadleaf tree species.

2.2. Remote sensing data

A WorldView-2 2A-level multispectral image of Palmyra Atoll was provided by the
DigitalGlobe Foundation (see Figure 1). The image was taken on 20 December 2016, and
consists of eight multispectral bands with a 2-meter spatial resolution, as well as
a panchromatic band with 0.5-meter resolution (see Table 1). The selected image was
chosen because it is fairly recent and almost completely cloudless. The image was radio-
metrically and geometrically corrected with a coarse terrain elevation model; given the flat
nature of the atoll, this correction is likely sufficient to overcome terrain effects. The data
were atmospherically corrected using DigitalGlobe’s proprietary Atmospheric
Compensation (AComp) process, which has proven very effective in tropical settings with
high levels of atmospheric water vapor (Cross et al. 2018; Pacifici 2016; Smith 2015).

Before calculating textural features and growing the random forest, the eight multi-
spectral bands were down-scaled from 2-meter pixels to 0.5-meter pixels using QGIS 3.0.0
software (QGIS Development Team 2009). As the panchromatic and multispectral pixels are
all perfectly aligned, no statistical resampling or panchromatic sharpening (pansharpening)
of the multispectral data was necessary – the 2-meter pixels were simply divided into
sixteen smaller pixels with a conserved value in order to produce a classification with
0.5-meter pixels. This approach allowed us to grow our random forest with the greatest
possible amount of textural information (contained within the 0.5-meter panchromatic
band) without introducing the added uncertainties of pansharpening the multispectral
data (Li, Jing, and Tang 2017).

2.3. Grey-level co-occurrence matrix (GLCM) textural features

Texture analysis is an important tool for remotely classifying land cover types with low
inter-class variability or a large amount of intra-class heterogeneity (Myint, Lam, and
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Figure 1. WorldView-2 image of Palmyra Atoll (December 2016) with aerial and ground-level views
of: (a) native broadleaf forest; (b) Cocos-dominated forest; and (c) Scaevola shrub thicket. Satellite
images courtesy of the DigitalGlobe Foundation.
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Tyler 2004; Irons and Petersen 1981). In particular, the grey-level co-occurrence matrix
(GLCM) (Haralick, Shanmugan, and Dinstein 1973) is a widely-used method for extracting
textural features from remote sensing data (Hall-Beyer 2017a; Marceau et al. 1990). While
the GLCM features may be extracted from many combinations of multispectral bands
and their principal components, most studies choose to simply use one spectral band or
a panchromatic band, if available (Hall-Beyer 2017a; Huang, Liu, and Zhang 2014).
Exclusive use of the panchromatic band for generating GLCM features may result in
some loss of information (Huang, Liu, and Zhang 2014), but many studies still achieve
significant increases in classification accuracy at reduced computational cost by restrict-
ing GLCM calculation to a single band (Pacifici, Chini, and Emery 2009; Puissant, Hirscha,
and Webera 2005). Given the very high spatial resolution of WorldView-2’s panchromatic
band (0.5 meters) and the easily differentiable canopy ‘textures’ of Cocos and native
broadleaf trees, we elected to extract our GLCM features directly from the panchromatic
band.

GLCM features were calculated using the ‘glcm’ and ‘raster’ packages (Zvoleff 2016;
Hijmans 2017) for R software, version 3.2.2 (R Core Team 2016). Eight textural features
reported in Table 1 were calculated for a range of window sizes, from 3-by-3 pixel squares
to 30-by-30 pixel squares (Hall-Beyer 2017b). For all of these window sizes, the central pixel is
classified using textural information extracted from across the entire window (Hall-Beyer
2017b). By visually examining the resulting texture maps (see Figure 2), we found that a 17-
by-17 pixel square window produced the greatest average difference between Cocos and
native broadleaf canopies while still preserving class edges (Murray, Lucieer, and Williams
2010). Given our 0.5-meter resampled resolution, this window corresponds to a square with
8.5 meter sides – slightly longer than a mature coconut palm frond (Young et al. 2014).
A larger window size allows the classifier to draw on more texture information when

Table 1. WorldView-2’s eight multispectral bands and the eight GLCM textural features calculated
from the panchromatic band.

Feature Spectral Band Wavelengths (nm)

B1 Coastal 400–450
B2 Blue 450–510

B3 Green 510–580
B4 Yellow 585–625

B5 Red 630–690
B6 Red-edge 705–745
B7 Near-IR 1 770–895

B8 Near-IR 2 860–1040

Feature GLCM Texture (pan) Texture Group (Hall-Beyer 2017b)

T1 Mean Statistical
T2 Variance Statistical

T3 Homogeneity Contrast
T4 Contrast Contrast

T5 Dissimilarity Contrast
T6 Entropy Orderliness
T7 Second Moment Orderliness

T8 Correlation Statistical
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evaluating a given pixel, which could increase accuracy; however, enlarging the scope of the
GLCM window will reduce sensitivity to land cover class edges (Clausi 2002) and effectively
smooth over the image. As our 17-by-17 pixel window is large enough to encompass whole
palm fronds (and the shadows around them) but is spatially smaller than the GLCM windows
of other very high resolution land cover classification studies (Kaszta et al. 2016; Wang et al.
2016; Bricher et al. 2013), we conclude that it is appropriate for capturing both intra-class
textural qualities and inter-class edges within our study system.

Hall-Beyer (2017a) notes that many of the GLCM measures are highly correlated with
one another. If these correlated features are used as input variables for the classifier
algorithm, classification accuracy could be reduced due to the imbalanced weighting of
the largest correlated feature groups (Murray, Lucieer, and Williams 2010; Pacifici, Chini,
and Emery 2009). The eight measures implemented in this study may be categorized
into the three uncorrelated groups found in Table 1: mean, variance, and correlation are
essentially ‘descriptive statistics;’ homogeneity, contrast, and dissimilarity are ‘contrast’-
based; and entropy and second moment are measures of ‘orderliness’ (Hall-Beyer
2017b). Following previous GLCM-based modeling efforts (Ozdemir and Karnieli 2011;

Figure 2. Clockwise from upper-left panel: (a) pansharpened WV-2 imagery showing a mix of Cocos
and Scaevola thickets on Cooper Island, Palmyra Atoll; (b) GLCM entropy (T6) calculated with a 17-by
-17 pixel window over the same area; (c) singleband rendering of the WV-2 red band (B5) over the
same area; and (d) singleband rendering of the WV-2 NIR-1 band (B7). Note that while general
differences between the two land cover types are visible in the WV-2 spectral data, the data also
contain significant variability within each class (the so-called ‘salt-and-pepper effect’) that can be
captured well by texture measures like GLCM entropy. Satellite images courtesy of the DigitalGlobe
Foundation.
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Murray, Lucieer, and Williams 2010), we chose the most influential texture feature from
each of the three uncorrelated categories as described in Table 1 (Hall-Beyer 2017b). This
‘feature selection’ step (see Figure 3) is described in detail in Section 2.5.2.

2.4. Validation and training data

The RF classifier was trained on 800 geographic points acquired directly from our
WorldView-2 image. Previous RF classification studies have observed overall accuracy
plateaus once the number of training pixels per class exceeds about 3–7 times the
number of training features (Millard and Richardson 2015; Rodriguez-Galiano et al.
2012b; Pal and Mather 2003). However, such results are specific to their exact study
situations and to the levels of intra-class variability present (Rodriguez-Galiano et al.
2012b). Others have broadly recommended using at least 10 times as many training
pixels per class as total features in decision tree-based classifications (Pal and Mather

Figure 3. Workflow figure for generating the final classification map. Software packages used are
specified for most steps; both R and QGIS are available as free, open-source programs (R Core Team
2016; QGIS Development Team 2009).

8 M. W. BURNETT ET AL.



2003). Following this recommendation, we selected 200 training points per class (12.5
times the 16 possible features used in this study) on which to grow our RF model.

To prevent biased training data, we implemented a stratified random sampling design in
which polygons were drawn around areas of clearly homogenous vegetation type through-
out the atoll ring and a random subset of pixels was selected from within each polygon
(Stehman 2009), sampling both areas near class edges and areas near the centers of
homogenous polygons. The inclusion of pixels near class edges meant the RF model
would be trained in locations where some portion of the GLCM window overlapped other
land cover types as well – an important consideration for improving the classifier’s edge
detection. Our vegetation classes and non-vegetated areas are easily distinguished using
WorldView-2’s very high resolution imagery (see Figure 1) combined with firsthand knowl-
edge of Palmyra Atoll’s vegetation and the previous mapping efforts of Wegmann (2005).
We collected an equal number of points for each of our four classes because the accuracy of
a random forest model may decrease when training from imbalanced data (Chen, Liaw, and
Breiman 2004). For each point, we extracted the values of the 8 spectral bands and the 8
GLCM texture features in the process of training the RF classifier, as described in section 2.5.

During the month of July 2017, we collected a total of 496 ground-sampled validation
points on Palmyra Atoll that represent our four land cover classes (see Table 2). These points
were used to independently cross-validate our classification results and produce overall
accuracy statistics, as they were held out of the training process. To create this validation
dataset, a simple random sample of 600 points was generated over the land area of Palmyra
Atoll. Each accessible point was visited and its canopy type logged; in addition, each point was
verified to represent homogenous canopy cover over a ~ 10-meter radius around the point in
order to account for the accuracy of the handheld GPS receiver. Any point that failed this
condition or proved inaccessible due to wildlife-related restrictions was removed, ultimately
resulting in 496 validation points. Even after the removal of all points from several small islets
that proved inaccessible, the sampled area still represents at least 90% of the atoll’s land area,
ensuring any variability within classes across the atoll is captured. In several cases of random
points landing on narrow non-vegetated features like roads and beaches (where land cover
boundaries are more clearly visible than between two vegetated classes), the points were
visually inspected over the WorldView-2 image after ground-validation to ensure accurate
class designations.

2.5. Random forest (RF) classification

We classified the entire terrestrial portion of theWorldView-2 image using a random forest
(RF) model, as implemented in the ‘randomForest’ package (Liaw and Wiener 2002) in R (R
Core Team 2016). RF models are bootstrapped ensembles of many classification trees that

Table 2. Number of training and validation points for each land cover class.

Land Cover Class Training Points Validation Points

Coconut palm 200 187
Native forest 200 191

Scaevola sericea shrub 200 57
Non-vegetation 200 61
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can handle many independent variables while providing very high accuracy (Shiraishi
et al. 2014; Evans and Cushman 2009; Breiman 2001). Each tree also implements
a randomized bagging approach to remove a subset of training data and use it to cross-
validate the result of each tree, allowing RF to provide a built-in ‘out-of-bag’ (OOB)
accuracy as well as metrics of input feature importance (Pal 2005; Breiman 2001).

The RF model was constructed using a pixel-based approach: individual training
pixels are used to train the algorithm, and the algorithm subsequently classifies every
pixel in the image. Many forest classification studies alternatively use object-based
approaches to great effect (e.g. Immitzer, Atzberger, and Koukal 2012; Yu et al. 2006),
including recent efforts to detect and count individual oil palms in spatially-organized
plantations (Li et al. 2016). But because Palmyra Atoll features dense forests with
complex, intermixed tree crowns and no maintained spatial arrangement, object-
based classification approaches were not included in this study to eliminate potential
errors in the segmentation process (Liu and Xia 2010).

We use 800 remotely-acquired training points to grow an RF using all sixteen
available features (see Table 1), which provides the statistical associations necessary to
conduct further feature selection to the three most influential uncorrelated textural and
spectral features. Then, a new RF grown off the pared-down feature set is used to classify
the entire 2016 WorldView-2 image. The accuracy of the resulting classification map is
evaluated using the 496 validation points described above, while OOB accuracy esti-
mates are used to compare this feature-selected RF classification to those produced
using only spectral features, only textural features, and the entire set of sixteen com-
bined features. These processes are described in depth below.

2.5.1. Water masking
Before classifying the image, water pixels were masked by growing an RF model using
only WorldView-2’s NIR-1 and NIR-2 bands and two classes: land and water. Land pixels
were trained with the aforementioned 800 training points; water pixels were trained on
a set of 400 new points chosen from the deep ocean, lagoon, and reef shallows around
Palmyra. Since water has very low reflectivity in the near-IR spectral range (Bartolucci,
Robinson, and Silva 1977), this simple random forest model was able to accurately
classify the entire image as either land or water. In addition, we manually removed
several misclassified instances of breaking waves, which can exhibit an abnormally high
NIR reflectance due to added surface roughness (Gordon and Wang 1992). While
a simple RF model could be built with the same binary approach to detect all vegetation
and mask out all non-vegetated land alongside water pixels, we were interested in
measuring the total land area of Palmyra and its islets and therefore designated non-
vegetated land as its own class within the main RF classifier.

2.5.2. Feature selection
First, the masked WorldView-2 image was classified using an RF model grown from all
sixteen features. However, previous work shows that correlation between independent
variables can adversely impact RF classification accuracy, even despite RF’s robust bag-
ging approach (Gregorutti, Michel, and Saint-Pierre 2017; Boulesteix et al. 2012; Pacifici,
Chini, and Emery 2009). We addressed this by dividing the eight spectral bands of
WorldView-2 into three mostly-uncorrelated categories: the Coastal and Blue bands (B1-
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B2); the Green, Yellow, and Red bands (B3-B5); and the Red-edge, NIR-1, and NIR-2 bands
(B6-B8) (Immitzer, Atzberger, and Koukal 2012). In essence this approach is very similar to
our selection of the three best uncorrelated GLCM features – it allows the user to
efficiently select an optimal feature set using the standard RF-generated variable impor-
tance plots. We then selected the most influential features in each spectral or textural
category using the variable importance indices generated by the sixteen-feature RFmodel
(see Figure 4). The first index, Mean Decrease in Accuracy (MDA), uses RF’s constantly-
permuting OOB samples to find the added error rate associated with any given input
variable’s exclusion from a tree (Genuer, Poggi, and Tuleau-Malot 2010). The second index,
Mean Decrease in Gini (MDG), measures the forest-wide average decrease in node
impurities from splits on a given variable, as measured by the Gini index (Han, Guo, and
Yu 2016). In both cases, the larger the index, the more influential was the corresponding
variable. Han, Guo, and Yu (2016) suggest a combined ranking of MDA and MDG as
a robust feature selection procedure; we calculate this variable importance score by
averaging a variable’s ranks in the MDA and MDG plots (see Figure 4).

Using our combined ranking (see Figure 4) and the feature categories established above,
we selected the Correlation (T8), Dissimilarity (T5), and Entropy (T6) GLCMmeasures and the
Coastal (B1), Red (B5), andNIR-1 (B7) spectral bands. Our three GLCM choices agree well with
Hall-Beyer (2017b), which proposes that classification studies in which a class patch might
contain ‘edge-like features’ (like coconut palm fronds) should consider Correlation over
Mean and Variance, Dissimilarity or Contrast over Homogeneity, and Entropy over Second
Moment. See Hall-Beyer (2017a) for descriptions of each GLCM measure.

2.5.3. Modal filtering
Finally, the resulting classification was smoothed with a 5-by-5 pixel modal (majority)
filter (Booth and Oldfield 1989). This step was integrated into the end of the

Figure 4. Feature importance metrics derived from the randomForest R package (Liaw and Wiener
2002) for the 16-band RF model. The right pane presents the averaged MDA and MDG rankings of
each feature, with a higher score representing greater variable importance.
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classification workflow (see Figure 3) to remove remaining salt-and-pepper noise, elim-
inate outlier pixel classifications that are likely too small to represent a true signal in the
forest canopy, and facilitate map interpretation. Since each pixel in the final classification
is 0.5-by-0.5 m, the 5-by-5 modal filter evaluated each pixel within the context of its
neighbors 1 m in any direction. As it is unlikely that a tree crown with a visible diamter
of <1 m could be reliably detected within Palmyra’s mature forest canopy, the filter
removed such isolated pixel clusters if their context contained another more dominant
vegetation class.

3. Results

The total land area estimated by classifying the entire water-masked image of Palmyra
(see Figure 5) is 2.37 square kilometres – very close to a manually-derived land area
estimate of 2.46 km2 for the year 2000, especially when considering tidal differences and
the dynamic nature of sandy islets (Collen, Garton, and Gardner 2009). Of Palmyra’s
2.37 km2 land area, we find that Cocos canopies occupy 1.00 km2 (42.3%), native forest
tree canopies cover 0.79 km2 (33.4%), and S. sericea shrubs cover 0.19 km2 (8.2%). The
remaining land area (0.38 km2; 16.1%) is classified as non-vegetated, and includes
buildings, roads, an airstrip, mowed grass (maintained by field station personnel and
resistant to colonization by other vegetation types), and sand. The mix of land cover is
highly variable from islet to islet (see Figure 5): for instance, Sand Island – the south-
western islet in the atoll ring – is 81.7% native forest and 12.3% Cocos. On the other
hand, the southern portion of the atoll ring is 6.2% native forest, 76.1% Cocos, and 17.6%
non-vegetated. See Appendix A for land cover information of each of Palmyra’s islets
and this article’s online supplemental materials for the full-sized, georeferenced classi-
fication file.

The feature-selected model’s overall out-of-bag (OOB) error stabilized at 4.6% after
running approximately 2,000 trees (see Figure 6), but in case variable interaction
stabilizes at a slower rate than OOB error, our forest size was expanded to 6,000 trees
(Evans and Cushman 2009). Native forest exhibited the greatest OOB error with 8.0%,
while Cocos and non-vegetation tied for the low OOB error of 2.5%. The spectral-only
and textural-only models have trouble detecting different classes – as expected, the
spectral model (10.6% OOB error) struggles to correctly classify Cocos while easily

Figure 5. The completed RF classification of Palmyra using the six selected features and a 5-by-5 pixel
modal filter. The full-resolution, georeferenced classification map of Palmyra Atoll's vegetation can be
downloaded from the Open Science Framework at https://osf.io/j2sta/ (doi:10.17605/OSF.IO/J2STA).
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identifying nearly all non-vegetated pixels; on the other hand, the textural model (10.1%
OOB error) finds Cocos canopy the most easily identifiable while error rates increase for
the other three classes. Combining spectral and textural features decreased OOB error
significantly, as seen in both the sixteen-feature model and the feature-selected model.
However, the feature-selected model achieved very similar results to the sixteen-band
model, suggesting the feature reduction step may be unnecessary in this instance.

In addition to the OOB error provided by the RF model based on 800 training points,
we use cross-validation with our 496 ground-collected points to determine our classifi-
cation’s accuracy (see Table 3). Overall classification accuracy equaled 95.4% using OOB
estimation and 97.0% using cross-validation.

In order to evaluate the performance of the RF classification for each specific land
cover class, we provide producer’s and user’s accuracies calculated with both OOB

Figure 6. Out-of-bag errors for each land cover class (see legend) and the RF models overall (black
line) versus the number of decision trees grown in the forest (plotted here up to 10,000 trees). Upper
left: an RF model trained on only spectral bands. Upper right: an RF model trained on only textural
bands. Lower left: an RF model trained on all sixteen features. Lower right: an RF model trained on
three selected spectral bands and three selected GLCM textural measures.
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(applied to 800 training points) and cross-validated (applied to 496 validation points)
statistics in Table 3. Producer’s accuracy can be likened to precision for an individual
class; it represents the likelihood that real features on the ground are correctly repre-
sented in the classification (Pratomo et al. 2017). User’s accuracy, similar to recall, is the
likelihood that features shown in the classification map are actually present in reality
(Pratomo et al. 2017). Cross-validation found Scaevola sericea shrubs to have the lowest
user’s accuracy at 88.7%, meaning 11.3% of pixels classified as Scaevola represent
another vegetation type in reality. However, the cross-validated producer’s accuracy of
Scaevola shrub was much greater at 96.5%, indicating pixels that truly represent
Scaevola were very frequently classified as such. The rest of the user’s accuracies
determined by cross-validation were all very high (>97.9%), and producer’s accuracies
for all classes exceeded 95%.

4. Discussion

4.1. Combined spectral and textural analysis

Tracking the changing distribution of introduced Cocos palms and the resulting decline of
native tree species is crucial for effective management of tropical island ecosystems.
Management communities across the Pacific have already undertaken efforts to actively
remove Cocos stands in island systems in order to preserve native forests and their
associated ecosystem benefits (e.g. Hathaway, McEachern, and Fisher 2011), but broad-
scale assessments of the coconut palm’s proliferation in these remote locations are lacking.
Our results demonstrate that a combination of remote sensing techniques are very likely to
assist in monitoring these vegetation classes on small, remote islands: using a combination
of very high resolution imagery, GLCM textural analysis, and an RF classifier, an overall cross-

Table 3. Top: Confusion matrix derived from the feature-selected RF model’s OOB errors for the 800
training points. Bottom: Confusion matrix calculated by cross-validating the smoothed, feature-
selected RF classification against 496 validation points. Columns represent the true vegetation types
at training or validation points while rows represent the classification results at those points.

Classified as:
Coconut
palm

Native
forest

Scaevola
shrub

Non-
vegetation

Producer’s
Accuracy

User’s
Accuracy

Out-of-bag accuracy statistics

Coconut palm 196 3 1 0 0.961 0.980
Native forest 5 184 9 2 0.920 0.920

Scaevola shrub 0 12 188 0 0.945 0.940
Non-veg. 3 1 1 195 0.990 0.975

Overall OOB accuracy: 0.954
Cross-validated accuracy statistics
Coconut palm 184 3 0 0 0.984 0.984

Native forest 0 183 2 2 0.958 0.979
Scaevola shrub 3 4 55 0 0.965 0.887

Non-veg. 0 1 0 59 0.967 0.983
Overall validated accuracy: 0.970
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validated accuracy of 97.0% is achieved for a four-class classification of our study site. Such
high accuracies are critical for assessing forest types on island environments, where even
small intrusions of invasive species can significantly alter ecosystem function and eventually
overtake entire islands (Young et al. 2017).

The combination of methods employed here proves essential for monitoring tropical
island vegetation. Out-of-bag error estimates (see Figure 6) reveal that RF models
trained exclusively on the eight spectral bands of WorldView-2 are less accurate overall
than our feature-selected model (89.4% versus 95.4% OOB accuracy) and substantially
worse at identifying Cocos canopies (79.0% versus 98.0% OOB accuracy), the primary
target of this study. Prior studies have demonstrated that, even after atmospheric
corrections are applied, the coastal (B1) and blue (B2) spectral bands are susceptible
to significant attenuation by water vapour in the tropics that can render their data noisy
or biased (Cross et al. 2018). To ensure these bands were not having an outsized
negative effect on the spectral-only classification, the spectral RF model was re-grown
without B1 and B2 to ultimately produce an overall OOB accuracy of 82.1%, with lower
OOB accuracies for all four classes. Similar reductions in accuracy were seen when
excluding B1 from the feature-selected model (91.9% overall OOB accuracy), with
much greater confusion between the Scaevola and native forest classes. The reduced
accuracy of both models after removing the coastal and blue spectral bands indicates
that even in the humid tropics, both bands may retain a strong enough signal to help
differentiate between broad vegetation classes after atmospheric corrections. Even so,
users should apply these spectral bands cautiously when working in tropical environ-
ments, especially when more precise identification of vegetation is necessary or in
contexts with a greater number of unique vegetation classes (Cross et al. 2018).

RF models grown using only the eight GLCM textural features are very effective at
identifying Cocos (98.0% OOB accuracy), but achieve similar overall accuracy (89.9% OOB
accuracy) to the spectral-only RF model. Accuracy appeared to suffer most in the
texture-only RF model when classifying narrow features and class edges. While the
models grown solely on spectral or textural data still show relatively high accuracies,
the small number of classes in this classification and the objective of mapping trees to
the scale of individuals set a very high bar for classification accuracy that is only properly
met by the combined spectral-textural RF models.

Previously reported findings of spectral similarity between Cocos canopies and other
island vegetation (Komba Mayossa et al. 2015; Lelong et al. 2004) are consistent with the
above results. When this spectral confusion is paired with the salt-and-pepper problems
inherent to the use of sub-meter imagery, textural analysis of the tree canopies becomes
a necessary component of the classification process. By implementing GLCM textures in
addition to multispectral data when training the RF classifier, we are able to produce
a classification map with very high accuracy for all vegetation classes.

Palm tree detection proves an excellent demonstration of the combination’s poten-
tial: previous studies have used satellite-based optical remote sensing to map oil palm
agrosystems in tropical regions, but these efforts typically rely upon the open spatial
arrangement of managed plantations to classify the palms (Lee et al. 2016; Li et al. 2016;
Srestasathiern and Rakwatin 2014; Carlson et al. 2013; Koh et al. 2011; Thenkabail et al.
2004). Even efforts to map Cocos in Vanuatu in the South Pacific have likewise relied on
open-canopy Cocos plantations for their segmentation and textural analyses (Komba

INTERNATIONAL JOURNAL OF REMOTE SENSING 15



Mayossa et al. 2015; Lelong et al. 2004). These methods are unsuitable in the most
common case of unmanaged Cocos plantations and in areas where former plantation
efforts have established runaway Cocos forests, as on Palmyra Atoll (Young et al. 2010;
Krauss 1979; Dawson 1959) and many other locations throughout the global tropics
(Rejmánek and Richardson 2013; Mueller-Dombois and Fosberg 1998). Very dense Cocos
canopies prevent easy recognition of individuals or the examination of tree spacing,
necessitating a combined spectral and textural method implemented with high-
resolution data.

4.2. Validation

A sample of 496 points was verified in the field and used to cross-validate the feature-
selected classification of Palmyra Atoll. Cross-validation found Scaevola sericea shrubs to
have the lowest user’s accuracy at 88.7%, but the rest of the user’s accuracies deter-
mined by cross-validation were all very high (>97.9%), and producer’s accuracies for all
classes exceeded 95%. While the OOB-based confusion matrix determined native forest
to be the least accurately-modelled class by both accuracy metrics, cross-validation
determined both accuracy metrics to be higher and more similar to the average
accuracies across classes. Importantly, Cocos pixels were classified with 98.4% user’s
and producer’s accuracies, indicating the model is extremely effective at classifying its
primary target of interest. The generally high accuracies produced by the RF model may
partially be a consequence of the small number of vegetation classes in our study site, as
well as potential biases in our validation sampling strategy.

Our validation sampling strategy – although beginning with a simple random sample –
only included points where land cover was deemed relatively homogenous for about 10 m
in any direction. This approach was chosen as a way to compensate for the inaccuracy of our
handheld GPS unit under the dense forest canopy: as the GPS unit’s positional uncertainty
potentially exceeded the size of both the WorldView-2 pixels (0.5 m) and the GLCMwindow
(8.5 m), our very conservative sampling strategy ensured that the validation pixel on the
image actually represented the land cover we observed on the ground. However, validation
restricted to homogenous points has also been documented to produce overly-optimistic
accuracy estimates in land cover studies (Stehman 2009; Hammond and Verbyla 1996).
While this trade-off adds some uncertainty to our cross-validated accuracy estimates, the
OOB accuracy estimates produced by the RF algorithm directly from the training dataset
were very similar to the cross-validated accuracies: overall OOB accuracy was 95.4% OOB
while cross-validated accuracy was 97.0% (see Table 3). Producer’s and user’s accuracies
generated for each class by the two validation approaches differed on average by only
1.47% and 0.45%, respectively, with the greatest difference occurring in user’s accuracy for
native forest (5.90%).

The closeness of the OOB and cross-validated accuracies is significant because the
800 training points on which the OOB accuracies were based included many points
within 10 m of class boundaries, i.e. in areas of non-homogenous land cover. Because
these points were selected directly from the image, we did not have to account for the
accuracy of the handheld GPS. OOB estimates of accuracy are also generally very close
(or even slightly pessimistic) approximations of true classification accuracy (Janitza and
Hornung 2018; Breiman 1996), lending further confidence to the cross-validated
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accuracy estimates. One previous examination of validation bias with RF classifiers did
find the same optimistic effect on the order of 10%, but notes that it drew validation
points from a spatial subset spanning only 17% of the entire study region and differing
from the broader region in terms of class distribution (Zhen et al. 2013). While Zhen et al.
(2013) did not examine OOB errors, our seemingly reduced validation bias could be due
to the much greater coverage of our validation points (>90% of the atoll’s land area) and
the representative distribution of said points across the four classes (see Table 3 and A1).

In general, class edges appear to be captured well by the classification (see Figure 7),
and individual trees are often correctly classified even when surrounded by different
land cover classes, indicating our GLCM calculation window is sufficiently small to
preserve inter-class variability at the spatial scale of tree canopies. However, class
edges are frequently a few pixels offset from their true locations (see Figure 7), indicat-
ing the 17-by-17 pixel GLCM window and 5-by-5 modal filter likely caused some minor
loss of information. But on the whole, these inaccuracies are small, and larger GLCM
windows appear to degrade overall class edge sensitivity. Many misclassifications of
native trees as coconut palms occur at points where the native tree canopies are small
or otherwise patchy, which most likely misled the RF model by appearing texturally
similar to Cocos canopies. Large shadowed gaps between coconut palm crowns are also
sometimes misclassified as native forest canopy, most likely because of the homoge-
neous texture of the shadowed area.

4.3. Feature selection

Interestingly, the feature-selected RF model showed no quantifiable improvement in OOB
errors over the sixteen-feature model (see Figure 6). Overall OOB error is nearly the same
(4.6% versus 4.5% for the sixteen-feature model) and the most accurately-classified vegeta-
tion types are the same for both (in order of decreasing accuracy: Cocos canopy, non-
vegetated surface, Scaevola shrub, and native forest). This finding may indicate that for
a mapping effort with so few classes, the feature selection effort is largely unnecessary.
However, visual inspection of each classification product suggests that the feature-selected
model is slightly more effective at mapping class boundaries and standalone trees.

4.4. Forest mapping results

Palmyra Atoll’s vegetation was manually mapped in 2005 (Wegmann 2005; reproduced in
2009; Lafferty et al. 2010). This map illustrates the dominant tree types across the atoll’s
forests, but not to the scale of smaller stands or individual tree crowns. While the
2005 map and our remote sensing effort cannot be compared directly due to differences
in methodology, the total extent of Cocos-dominated forest was estimated by (Wegmann
2005) as 0.92 km2, fairly similar to the 1.00 km2 value derived from this study. Total area of
native forest, plus Scaevola sericea and Terminalia catappa, was estimated at 1.09 km2 in
2005, while the total areas of Scaevola and native forest add up to 0.98 km2 in this
classification. Wegmann (2009) also uses nearest-neighbour density estimates to calculate
a total of 52,992 (±3,864) coconut palms taller than 2 m across the atoll as of 2005.
Extrapolating this value to the slightly larger area of Cocos forest found by the present
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study yields an updated total of 57,600 (±4,200) coconut palms, although this estimate
does not account for any changes in Cocos density over the intervening decade.

The results of our classification show that most of Palmyra’s coconut palms occur on
the larger portions of the atoll ring: Kaula Island (see Figure A1) has the highest
proportion of land covered by Cocos (75.67%), and Holei and Paradise Islands

Figure 7. Left column: sections of Palmyra Atoll as seen in the pansharpened WV-2 image. Right
column: the classification overlaid on top of the WV-2 image’s panspectral band (see legend at
bottom). Top row: a section of Paradise Island (the atoll’s large southern islet) showing distinct
Cocos-native forest edges; note the pond misclassified as Scaevola shrub. Middle row: a section of
Cooper Island (the atoll’s large northern islet) showing a Scaevola thicket, the airstrip, and the edges
of a Cocos forest. Bottom row: a section of native tree-dominated Eastern Island (the atoll’s north-
eastern islet) showing the classification’s ability to pick out individual coconut palm trees. However,
some of the spots classified as Cocos stands are false positives. Satellite images courtesy of the
DigitalGlobe Foundation.
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(connected to Kaula via narrow isthmuses) are also among the highest in the atoll
(50.90% and 62.43%, respectively; see Appendix A). While Cooper Island, the largest in
the atoll, is only 33.70% covered by Cocos, much of the island’s land mass is protected
from invasion by the maintenance of Palmyra’s airstrip and field station. Strawn and
Aviation Islands, linked to Cooper in similar fashion, have very high Cocos coverages at
59.39% and 74.43%. Meanwhile, sizeable islets like Sand and Eastern Islands are only
12.26% and 19.68% covered by Cocos canopy.

4.5. Future applications

We built our training dataset in a completely remote fashion to demonstrate the
possibility that coconut palms could be classified on tropical islands with great accuracy
without necessarily visiting the islands to collect ground-validated points, although prior
knowledge of Palmyra’s vegetation types informed the creation of the training dataset.
As there are over 200 coral atoll islands like Palmyra across the Pacific and Indian oceans
(Goldberg 2016) – not to mention larger volcanic islands – the challenges of visiting
these isolated environments would quickly multiply if the spread of Cocos were to be
assessed across the tropics. As verified by our ground-validated dataset, the 800 training
points acquired only by inspecting remote imagery of Palmyra Atoll were able to
produce accurate forest classifications and estimates of Cocos extent.

It is worth noting that Palmyra Atoll’s environment offers a simple set of distinct
vegetation types that undoubtedly contributed to the high classification accuracy
obtained by the present study. While atoll and island ecosystems often do contain
similar low-diversity assemblages of plant species, many other islands feature perma-
nent human populations, elevated topographies, different climates, etc. All of these
traits would likely contribute new land cover types that would need to be addressed
before the methodologies described here could produce similarly high accuracies, and
such high accuracies may not be achievable with a greater number of classes. For these
reasons, wider attempts to remotely map Cocos and other island vegetation would need
to consider the unique context of each island system when designing the training
process. Beyond those considerations, researchers would be faced with another trade-
off: spend the time and resources to re-train their algorithm for each island (or group of
similar islands within the same image), or attempt to obtain surface reflectance values
accurate enough to be applied wholesale to many islands at once – perhaps feasible
with modern atmospheric correction techniques, but still a difficult path forward in the
wet tropics (Cross et al. 2018; Song et al. 2001).

Ultimately, while the classifier’s vegetation classes may need to be altered to suit the
vegetation types of individual atolls or island groups, our approach’s ability to detect
unmanaged Cocos forests should remain strong in most locations with imagery suitable
for the present study’s combined spectral and textural methodology. Even considering
islands with much greater diversities of vegetation cover, the unique morphological
traits of Cocos canopies that proved easily detectable by GLCM feature extraction will
still be present. With the increasing availability of very high resolution satellite imagery
at affordable prices and the advent of machine learning models with effective built-in
accuracy assessments, we suggest that the extent of Cocos forest could be estimated
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over large ranges with remotely-acquired data, although firsthand or general knowledge
of a given island’s vegetation would certainly help inform the training process.

5. Conclusions

This study successfully demonstrates how a combination of several remote sensing
methods and very high resolution satellite imagery can effectively assess an important
and unquantified environmental problem. GLCM textural feature extraction is shown to
be a highly effective supplement to standard multispectral remote sensing for differ-
entiating between Cocos and broadleaf forests in an island environment. The random
forest (RF) classifier also demonstrates its ability to produce a highly accurate classifica-
tion in this system using very high resolution WorldView-2 data. Due to the great
textural differences between Cocos and broadleaf canopies, tropical island forests turn
out to be a model system for applying a joint spectral and textural classification
approach, and an overall cross-validated accuracy of 97.0% is achieved for this simple
four-class classification. Cocos classification accuracy increases from 79.0% to 98.0%
when adding the eight GLCM textural features to the eight WV-2 spectral bands.

Given the great ecological impacts of Pisonia forest conversion to Cocosmonocultures on
atoll and island environments (Young et al. 2017; McCauley et al. 2012; Young et al. 2010), as
well as Pisonia’s decline across the Pacific basin as a result of coconut palm agriculture (Krauss
et al. 2015; Handler et al. 2007; Mueller-Dombois and Fosberg 1998; Walker 1991), the ability
to remotely assess the forest composition of tropical islands is a critical next step in evaluating
the health of these relatively inaccessible ecosystems. This study has demonstrated the
viability of spectral and textural analysis by a machine learning algorithm (RF) for precisely
mapping Cocos using the very high resolution imagery that is increasingly available to
researchers, overcoming both the salt-and-pepper effect and the spectral similarity of Cocos
trees to other island vegetation that has hampered previous research efforts (e.g. Lelong et al.
2004). In addition, the study tests the effectiveness of remotely-acquired training data for
growing the RF model – an important factor for expanding future studies’ scopes to a greater
number of islands, given the abundance of isolated islands across the global tropics. Using
variants of this approach that consider the unique environmental context of each island and
adjust the classification scheme accordingly, future studies may examine coconut palm
proliferation in other island groups or even across large swaths of Earth’s oceans. While
expanding the study area to such a vast region would surely raise many methodological
questions, the process outlined in this study should retain its ability to accurately recognize
Cocos canopies in a wide range of locations. Such broad-scale assessments could guide efforts
to establish conservation areas in key areas of native forest, inform Cocos removal projects,
and help build datasets to understand ecological dynamics in the understudied tropical island
system. To these ends, the entirety of this study’s analysis was conducted on free, open-source
software products, increasing the accessibility of this study’s methodology.
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Appendix A

Palmyra’s islets are extremely variable in their sizes and vegetation types (see Figure A1). The
north and south portions of Palmyra’s largely-artificial rim (Collen, Garton, and Gardner 2009)
feature very large amounts of Cocos nucifera-dominated forest, perhaps due to post-war planting
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efforts targeting the largest islands (Hathaway, McEachern, and Fisher 2011; Krauss 1979).
Meanwhile, several smaller islets constructed during the 1940s (Collen, Garton, and Gardner
2009) such as Sand, Lesley, and Dudley Islands feature mostly native broadleaf trees, and some
of Palmyra’s eastern rim (which existed in part before wartime dredging efforts) likewise features
predominantly native forests. Cooper Island contains most of the atoll’s Scaevola sericea shrubland,
perhaps due to disturbances associated with the mile-long runway and small field station present
on the island. Some islands referenced in earlier atoll maps have become joined to other land-
masses (e.g. Bird Island to Holei Island), lost land area or split into fragments (e.g. Home Island,
Quail Island), or almost completely disappeared (e.g. Dadu Island to the south of Barren Island)
(see Collen, Garton, and Gardner 2009; Lafferty et al. 2010; Wegmann 2005).

Palmyra’s islets vary greatly in Cocos coverage (see Table A1), with some major islets
featuring as much as 75% Cocos-dominated forest canopy (Kaula) and others less than 20%
(Eastern, Sand). The non-vegetated fraction of islets is much greater on some small islets,
where sand banks surrounding the vegetated area are proportionally very large. Many islets in

Figure A1. Classification map of Palmyra Atoll with islets labeled.

Table A1. Land cover compositions of the islets of Palmyra, as designated in Figure A1. Islets are
sorted by total land area.

Islet % Cocos % Native forest % Scaevola % Non-veg. Total area (m2)

Palmyra 42.31 33.40 8.23 16.07 2,365,387 a

Cooper 33.70 33.87 18.67 13.76 974,112

Kaula b 75.67 8.12 0.14 16.07 368,239
Holei c 50.90 30.72 1.22 17.15 151,174

Eastern 19.68 58.76 0.25 21.32 142,909
South Strip 42.81 43.00 2.30 11.90 93,777
Strawn 59.39 29.00 1.15 10.45 86,187

Paradise 62.43 21.18 0.65 15.74 85,529
Papala d 28.44 56.69 0.17 14.70 79,198

Sand 12.26 81.75 2.42 3.56 78,633
North Strip 49.45 39.18 4.33 7.04 68,983

Aviation 74.43 15.73 0.31 9.53 60,094
Barren e 9.34 47.79 0.21 42.66 55,447
Quail 25.98 31.82 0.87 41.33 41,849

Whippoorwill 18.80 47.86 0.01 33.32 17,282

(Continued )
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our classification reported very little Scaevola sericea presence – although Scaevola is consid-
ered common across the atoll, it is often covered by the canopies of larger Tournefortia,
Pisonia, Cocos, or Pandanus trees, or on some islets restricted to narrow beach areas.

Table A1. (Continued).

Islet % Cocos % Native forest % Scaevola % Non-veg. Total area (m2)

Home 37.57 17.04 0.00 45.39 15,315

Dudley 8.07 83.86 4.04 4.02 10,465
Lesley 13.37 69.46 0.00 17.17 8,012
Portsmouth 3.02 29.50 0.15 67.33 4,827

Fern 74.89 11.99 0.00 13.12 4,169
Lost 4.10 77.84 0.20 17.86 2,979

Bunker 19.76 38.35 0.00 41.89 1,867
a Note that the total land area for Palmyra is greater than the sum of the following islet areas. This discrepancy is due
to the exclusion of some sand banks and rocks classified as non-vegetated land by the RF classification, but not
defined here as part of any of Palmyra’s islets.

b Kaula Island as described here is sometimes divided into Kaula, Marine, and Engineer Islands.
c Holei Island as described here includes the two Bird Islands that were joined to Holei by shifting sand relatively
recently.

d Papala Island as described here is sometimes divided into Papala and Pelican Islands.
e Barren Island as described here includes the small islands Garron and Dadu.
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