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Summary. We propose a method to test the correlation of two random fields when they are both spatially autocorrelated. In
this scenario, the assumption of independence for the pair of observations in the standard test does not hold, and as a result
we reject in many cases where there is no effect (the precision of the null distribution is overestimated). Our method recovers
the null distribution taking into account the autocorrelation. It uses Monte-Carlo methods, and focuses on permuting, and
then smoothing and scaling one of the variables to destroy the correlation with the other, while maintaining at the same time
the initial autocorrelation. With this simulation model, any test based on the independence of two (or more) random fields
can be constructed. This research was motivated by a project in biodiversity and conservation in the Biology Department at
Stanford University.
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1. Motivation

Assessing significance of the correlation coefficient is not
straightforward if the values of the variables involved vary
smoothly with location (throughout the article smooth refers
to spatial autocorrelation, and it may be the case that the
variable changes abruptly over a short distance). With spa-
tially autocorrelated data, nearby points may provide almost
identical information. Hence there is a tension between sample
size, resolution and the number of independent measurements;
that is, at some level, more data, meaning sampling the pro-
cess at a higher resolution, does not mean more information.
As a result, classical tests Fisher (1915) tend to incorrectly
reject the null (larger type II errors). Some work has been
done, particularly in the field of Geostatistics, to overcome
this problem. For instance, Clifford, Richardson, and Hemon
(1989) propose a method that estimates an effective sample
size M < N to be used in such tests, in an attempt to capture
the real uncertainty. The correlation coefficient is thus eval-
uated with a Student’s t distribution with M degrees of free-
dom (distribution with larger variance), which accounts for
the loss of precision due to the underlying spatial component.
The method, however, is developed for Gaussian random fields
and in reality smoothed processes tend to be non-Gaussian.

We propose a Monte-Carlo method to test the correlation
of two random fields that takes account of the spatial auto-
correlation. By

(1) randomly permuting the values of one of the fields
across space we eliminate the dependence between
them, and

(2) smoothing and scaling the permuted field we approx-
imately recover, with the help of the variogram, the
spatial structure suppressed in (1).

In the same spirit, Allard, Brix, and Chadoeuf (2001) pro-
pose a method that is based on random local rotations, but
applied to the characteristics of the spatial structure of point
processes, where the intensity (rate parameter) is assumed to
be constant at small scales and varies at large scales, the op-
posite situation we encounter with random fields, were the
autocorrelation usually fades away as the distance increases.

By repeating steps (1) and (2) many times, we can obtain
approximate realizations of the null distribution of interest. In
fact, with this simulation model, it is possible to examine the
null distribution of a larger variety of statistics. In particular
any test based on the independence of two (or more) random
fields can be constructed, the simplest example being the test
for a single Pearson’s correlation coefficient between the two
random fields. We will call it global correlation.

Other spatially local tests may be of interest—for exam-
ple, which regions show strong correlation between the two
fields—the question that our collaborators posed (McCauley
et al., 2012). They mapped the locations of sites over the
world using two criteria:

� amount of species richness—biodiversity, and
� travel time in days needed to reach the nearest city—

remoteness.

Figure 1a and b represent both these fields, and we see
that they are spatially very smooth. Are remoteness and
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Figure 1. Top right: Biodiversity as a function of domain. Top left: Remoteness as a function of domain. Bottom: Local
correlations between biodiversity and remoteness using a Gaussian kernel with bandwidth λ = 5.281 (see Appendix 2), where
the blue circles indicate the extent of the neighborhood for 5 locations at random. The gray areas correspond to areas with
no data. (a) Biodiversity. (b) Remoteness. (c) Local correlations.

biodiversity correlated with one another? that is, are there
more species in remote areas that are better insulated from
human disturbance? To succinctly communicate the strength
of these correlations, the authors were interested in reporting
a p-value map for the areas where overlap between remote-
ness and biodiversity occurs. Initially they used Geograph-
ically Weighted Regression methods (Fotheringham, Bruns-
don, and Charlton, 2002), a set of regression techniques that
tackle spatially varying relationships. This book has captured
considerable attention in the Geostatistics community. How-
ever, these methods focus on comparing coefficients for dif-
ferent spatial areas, and identifying the areas with stronger
relationships, but with no assessment to whether the coeffi-
cients in the model are significant or not.

Given the map of correlations in Figure 1c, where each
value corresponds to the correlation between biodiversity and
remoteness in a given neighborhood (we will call them local
correlations), we will apply our method and produce a map
of p values, where each p-value assesses significance of the
correlation in that particular location. See Appendix 2 for
details on how to calculate the local correlations.

We organize the article as follows. In Section 2 we show the
results of applying our method to the biodiversity dataset.
Section 3 illustrates the limitations of the standard test un-
der spatial autocorrelation. Section 4 describes in detail the
algorithm proposed in this article, and in Section 5 we study
the behavior of the method by performing power and type I
error analyses, and compares it to the approach in Clifford
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et al. (1989). We conclude and summarize our findings in the
discussion.

2. Biodiversity Data

Protecting remote ecosystems is the future of global diver-
sity, WWF ecologists divided the world into 16 unique regions
(Biomes) based on land cover and climate. In this article, and
for simplicity, we will focus on the part of the biodiversity
dataset that corresponds to the American region of Biome 1
(tropical and subtropical moist broadleaf forests) to illustrate
our methodology.

Biodiversity (X) is the result of estimating the number of
species of plants, amphibians, birds and mammals in an area
of 100 km × 100 km and centered at location s. The estimates
for the 4 groups is normalized to a maximum score of 10, with
X being the average of those normalized counts. Remoteness
(Y) combines a number of data sets that influence speed of
travel: road networks, angle of slope, density of vegetation,
river courses, etc. It takes values between 1 and 8 and indi-
cates the travel time in days needed to reach the nearest city
larger than 50,000 inhabitants from location s, where 8 rep-
resents any travel time larger than 7 days. Our sample is de-
noted by (Xs,Ys) = [(Xs1 , Ys1), . . . , (XsN , YsN )], s = (s1 . . . sN),
where si ∈ R2 are the longitude and latitude coordinates of
observation i and N = 19,926.

2.1. The Empirical and Smoothed Variogram for
Biodiversity

The theoretical variogram is a function describing the de-
gree of spatial dependence of a random field Xs. It is de-
fined as the variance of the difference between field values
at two locations si and sj across realizations of the field:
γ(si, sj) = 1

2
Var(Xsi − Xsj ), see Cressie (1993). The empirical

variogram for the sample Xs1 , . . . , XsN is the collection of pairs
of distances uij = ‖si − sj‖ between si and sj, and their corre-
sponding variogram ordinates vij = 1

2
(Xsi − Xsj )

2. The empir-
ical variogram for biodiversity is plotted in Figure 2a. Since
γ is expected to be a smooth function of distance, it is com-
mon to smooth the empirical variogram to improve its prop-
erties as an estimator for γ. In our algorithm, we will use
the smoothed variogram γ̂, which is obtained using a kernel
smoother and defined in Appendix 1. The black curve in Fig-
ure 2a is the smoothed variogram for biodiversity with band-
width h = 0.746, and truncated at distance u = 10, which cor-
responds to the 25% percentile of the distribution of pairs of
distances. We truncate the variogram because the precision of
the estimate is expected to decrease as the distance increases,
since a decreasing number of pairs are involved.

When pairs of distances are small, the variance of Xsi − Xsj

is small, indicating that observations close to each other are
very similar. As pair distances increase, the autocorrelation
dies off and the variogram grows; as farther apart observations
are less similar. The increasing nature of the variogram as the
distance increases is a common behavior that corroborates the
spatial autocorrelation present in the variable biodiversity.

2.2. Applying our Method to the Biodiversity Dataset

In this section we apply to the biodiversity dataset the al-
gorithm that we describe in Section 4. Given Xs and Ys,
we will test significance of (1) the global correlation co-

Figure 2. Top: empirical (scatter plot in gray scale) and
smoothed (black line) variogram for biodiversity in a logarith-
mic scale. The variograms are truncated at distance 10 and
the smoothed variogram is calculated using a Gaussian kernel
with bandwidth h = 0.746 (see Appendix 1). The intensity of
the gray color in the empirical variogram indicates the den-
sity of the data. Bottom: Null distribution of rXs,Ys for the
biodiversity dataset estimated with our algorithm. The black
line corresponds to the observed correlation r̂Xs,Ys = 0.224.
The p-value is 0.057. (a) Empirical and smoothed variogram
for biodiversity. (b) Null distribution estimated with our al-
gorithm.

efficient [H0 : ρXs,Ys = 0], and (2) the set of local corre-
lations r̂λ

Xs,Ys
(s1), . . . , r̂

λ
Xs,Ys

(sN) plotted in Figure 1c [H0 :
ρXs,Ys(sj) = 0, ∀j], and calculated using a Gaussian kernel
with neighborhood window truncated at bandwidth λ = 5.281
(see Appendix 2).

We will see that the algorithm returns X̂
1

s, . . . , X̂
B

s as a
result of randomizing and smoothing Xs B = 1000 times,
with bandwidths � ∈ (0.005, 0.785). These are proxies for
Xs with approximately the same autocorrelation but with
the characteristic of being independent of Ys. The pairs
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(X̂
1

s,Ys), . . . , (X̂
B

s ,Ys) will be used to test the situations (1)
and (2) above.

We chose to randomize Xs (biodiversity), as we are free to
pick the most convenient one, since the purpose is to break
the dependence between both variables.

2.2.1. Testing the global correlation. The observed global
correlation coefficient between biodiversity and remoteness
is r̂Xs,Ys = 0.224. We use r = (r1, . . . , rB) as an estimate
of the sampling distribution of rXs,Ys under the null hy-

pothesis of independence, where ri = cor(X̂
i

s,Ys); see Fig-
ure 2b. Using this null distribution to test H0 : ρXs,Ys =
0, the p-value is p̂

r
= P(|rXs,Ys | > |̂rXs,Ys |) = 1

B

∑B

i=1
I[|ri| >

|̂rXs,Ys |] = 0.057 (indicated with a black line in Figure 2b).
Had we assumed that the sample pairs were independent, and
used instead a Student’s t with N − 2 degrees of freedom, the
p-value would have been effectively zero, since the variance of
the Student’s t distribution is significantly smaller.

2.2.2. Testing local correlations. Each pair of random

fields (X̂
i

s,Ys), i = 1, . . . , B, can be used to calculate a new

map of local correlations under the null hypothesis (X̂
i

s

and Ys are constructed to be independent). Hence we can
compute local p values in exactly the same was as was
done globally above. A sample distribution of the statistic
rXs,Ys(sj) under the null is r(sj) = (r1(sj), . . . , rB(sj)), where
ri(sj) = rλ

X̂
i

s,Ys

(sj). The p-value for testing H0 : ρXs,Ys(sj) =
0 at location sj is psj = P(|rXs,Ys(sj)| > |̂rλ

Xs,Ys
(sj)|) =

1
B

∑B

i=1
I[|ri(sj)| > |̂rλ

Xs,Ys
(sj)|]. The resulting p-value map is

plotted in Figure 3, where we can identify the regions that
are strongly correlated. For comparison, we also plot the map
of p values had we used the standard test.

3. Behavior of rXs,Ys Under Spatial
Autocorrelation

If (x1, y1), . . . , (xN, yN) is an independent and normally dis-
tributed sample, the distribution for the Pearson’s correlation
coefficient under ρX,Y = 0 is

fN(r) = (1 − r2)
N−4
2

B{ 1
2
, 1

2
(N − 2)} , ‖r‖ ≤ 1. (1)

The statistic t = (N−2)
1
2 r

(1−r2)
1
2

is used to test for H0 : ρX,Y = 0,

which follows a Student’s t distribution with N − 2 degrees
of freedom, see Kenney and Keeping (1951).

In the previous section we have seen that even though
the sample size of the biodiversity dataset was very large
(N = 19,296), the sample distribution for rXs,Ys was some-
what wide (Figure 2b).

This emphasizes the following point, which we demonstrate
via a simulation. For a pair of spatially correlated random
fields, the sample size or, more precisely, the resolution at
which the fields are sampled, can play less of a role in the
behavior of the distribution of rXs,Ys ; rather it is the extent
of the spatial autocorrelation that determines this distribution
(see Walther, 1997 for an equivalent problem with time series).

Figure 3. Top: map of p values for the correlations between
biodiversity and remoteness in Figure 1c, obtained with our
method with B = 1000 and � ∈ (0.005, 0.785). Bottom: p val-
ues map if we assume that there is no spatial autocorrelation
and use the standard test to assess the local correlations.

Let Ws be a stationary and isotropic Gaussian random
field, s ∈ R2, with Matérn autocorrelation function ϕ(u) =
[2κ−1�(κ)]−1(u/φ)κKκ(u/φ) where φ > 0 is the scale, and the
shape parameter κ > 0 determines the smoothness of the pro-
cess, var(Ws) = σ2. For κ = 0.5, the Matérn autocorrelation
function reduces to the exponential, and when κ → ∞ to the
Gaussian.

Suppose Xsi is generated by a stationary process

Xsi = Wsi + Zi (2)

with Zi being mutually independent and identically dis-
tributed with zero mean and nugget variance τ2 (measure-
ment error), see Diggle and Ribeiro (2007). The theoretical
variogram of Xsi under stationarity is described in Appendix
1 and illustrated in Web Figure 4.
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Figure 4. Top, left and right: Illustration of Xs and Ys, two independent realizations of a Gaussian random field with
exponential autocorrelation function with φ = 0.03 and grid size g = 0.01. Bottom, left and right: null distribution for rXs,Ys

returned by the algorithm (blue), for a Gaussian and exponential autocorrelation function respectively, together with the true
null (pink) obtained by simulating from model (2). The corresponding 95% Confidence Intervals are added to the plot. (a)
Gaussian random field Xs. (b) Random field Ys, independent of Xs. (c) Gaussian autocorrelation function. (d) Exponential
autocorrelation function.

Figure 4a and b are Xs and Ys, two independent real-
izations of this process in the grid [0, 1] × [0, 1] with reso-
lution N = 101 × 101 = 10,201, and parameters κ = 0.5 and
φ = 0.30. We have used the R package RandomFields to sim-
ulate these processes (R Core Team, 2013; Schlather et al.,
2013).

In Web Figure 1, Web Figure 1a is the scatter plot of Xs

and Ys, whereas Web Figure 1d is the scatter plot of two inde-
pendent samples, each of them mutually independent (non-
spatially correlated) and normally distributed. The correla-
tion coefficient is much larger for Xs and Ys (̂rXs,Ys = 0.3).

Web Figure 1b and c are two new sets of independent sim-
ulated processes Xs and Ys, showing negative strong corre-
lation and a correlation closer to zero respectively. Thus, as
we have seen, a consequence of the spatial autocorrelation is
a larger variance for the distribution of rXs,Ys . In fact, the
larger κ, the larger the variance. Intuitively, consider the ex-
treme case of two very smooth one-dimensional fields (i.e.,
lines) with randomly chosen orientations (slopes); the corre-
lation of sampled pairs will either be −1 and +1 depending
on the randomly chosen orientation; a maximal variance situ-
ation. The same intuition applies to higher-dimensional fields.



6 Biometrics

The null distribution for rXs,Ys under ρXs,Ys = 0 can be es-
timated by generating the independent pairs (Xi

s,Y
i
s). With

this distribution, the probability of observing values as ex-
treme or more than 0.3 is 0.16, with no evidence against H0.

Although Xs and Ys have been constructed to be indepen-
dent of each other, if we use the Student’s t distribution to
test H0 : ρXs,Ys = 0, the p-value for r̂Xs,Ys = 0.3 is 0.

4. The Algorithm

We propose a method that approximately recovers the null
distribution of rXs,Ys , or any other statistic based on the in-
dependence of Xs and Ys. The following scheme summarizes
the main steps of the algorithm.

Let Xs and Ys be a realization of two random fields. Repeat
the following two steps B times:

(1) Randomly permute the values of Xs over s, which we
denote by Xπ(s); this means Xπ(s) and Ys are indepen-
dent.

(2) Smooth and scale Xπ(s) to produce X̂s, such that its
smoothed variogram γ̂ approximately matches γ̂(Xs);

that is, the transformed variable X̂s has approximately
the same autocorrelation structure as Xs.

The random fields X̂
1

s, . . . , X̂
B

s have approximately the
same autocorrelation structure as Xs, but are each indepen-

dent of Ys. Hence, the pairs (X̂
1

s,Ys), . . . , (X̂
B

s ,Ys) are the
ingredients for the calculation of a null distribution. For in-
stance, the distribution of rXs,Ys under H0 : ρXs,Ys = 0 can

be approximated by r = (r1, . . . , rB), where ri = cor(X̂
i

s,Ys),
but we could proceed equivalently with any other statistic
based on the independence of Xs and Ys.

Note that we do not pose restrictions on which random field
to permute, but the algorithm assumes that Xs is stationary.

Step 4 of the algorithm is described in detail in the following
section.

4.1. Step 2: Matching Variograms

This step focuses on recovering the intrinsic spatial structure
of Xs that was eliminated with the random permutation. As
we have seen, the null distribution of rXs,Ys is mainly deter-
mined by the amount of autocorrelation, and this step will
determine how well we are able to recover it. Our approach
is non-parametric, which implies that the variogram match-
ing does not rely on model assumptions, such as choosing a
parametric model for the variogram.

Formally, the problem reduces to choosing a variogram
from the family

β γ̂(Xδ
s) + α, (3)

that best approximates γ̂(Xs), the smoothed variogram of Xs.
Let Xπ(s) be the permuted random field obtained in step 4

above. Choose � to be a set of values for the proportion of
neighbors to consider for the smoothing step.

(1) Calculate the smoothed variogram γ̂(Xs) by smoothing
the empirical variogram of Xs (see Appendix 1).

(2) For each δ ∈ � repeat:
(a) Construct the smoothed variable Xδ

s using a ker-
nel smoother that fits a constant regression to
Xπ(s) at each location sj (see Appendix 2).

(b) Calculate γ̂(Xδ
s) as in 4.1.

(c) Fit a linear regression between γ̂(Xδ
s) and γ̂(Xs),

where (α̂δ, β̂δ) are the least-squares estimates.
(3) Choose δ∗ ∈ � such that the sum of squares of the resid-

uals of the fit in 4.1 is minimized.

(4) Transform Xδ∗
s by X̂

δ∗

s = |β̂δ∗ | 1
2 Xδ∗

s + |α̂δ∗ | 1
2 Z, where Z

is a vector of mutually independent and identically dis-
tributed Zi’s with zero mean and unit variance.

By varying the tuning parameter or proportion of neighbors
δ in step 4.1 we obtain a family of variograms with different
shapes, choosing the one more similar to the variogram of the
original variable Xs.

The linear transformation in step 4.1 ensures that the

scale and intercept of γ̂(X̂
δ∗

s ) match those of γ̂(Xs), since
the smoothing in step 4.1 has changed the scale of Xs (the
smoother Xδ∗

s , the smaller the variance), in addition to the
intercept (nugget variance) of γ̂(Xs).

The variogram of the random field X̂
δ∗

s is a member of the

family in (3), and X̂
δ∗

s has been constructed to match γ̂(Xs)
in shape, scale, and intercept.

Note that |β̂δ∗ |var(Xδ∗
s ) is an estimate of σ2 in (A.2),

|α̂δ∗ | is an estimate of τ2, and correspondingly var(X̂
δ∗

s ) =
|β̂δ∗ |var(Xδ∗

s ) + |α̂δ∗ | is an estimate of σ2 + τ2.
For an illustration of the variogram matching see Figure 5.

Different δs result in different shapes for γ̂(X̂
δ

s), and the best

match between γ̂(Xs) and γ̂(X̂
δ

s) (gray) is reached with δ =
0.085. The residual sum of squares of linearly regressing γ̂(Xδ

s)
on γ̂(Xs) for different values of δ are plotted in Web Figure 2.

5. Simulation Results

In this section we study the performance of our method for
testing H0 : ρXs,Ys = 0 by comparing the estimate of the null
distribution for rXs,Ys provided by our algorithm with an es-
timate of the true null distribution.

In addition to that, we carry out power and type I error
analyses (Section 5.2), and compare the results to Clifford’s
approach.

Let Xs and Ys be two independent Gaussian random
fields in the grid [0, 1] × [0, 1] with resolution N = 101 × 101 =
10, 201, following model (2) with σ2 = 1, μ = 0, and:

(1) Gaussian autocorrelation function ϕ(u) = exp[−(u/φ)2]
with scale parameter φ = 0.3.

(2) Exponential autocorrelation function ϕ(u)= exp(−u/φ)
with φ = 0.3.

We apply our algorithm to one realization of the pair (Xs,Ys)
in situations 5 and 5, with B = 1000 and bandwidths �gauss =
(0.1, 0.2, . . . , 0.9) and �exp = (0.07, 0.080, . . . , 0.18), respec-
tively.
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Figure 5. Variogram matching between the original biodiversity variable Xs (black) and the transformed variable X̂
δ

s (gray)
for four different values of bandwidth: � = (0.020, 0.045, 0.085, 0.120). The best match is reached with δ = 0.085.

The null distributions that the algorithm returns are plot-
ted respectively in Figure 4c and d, together with the true
nulls obtained by simulating 1000 times the pairs (Xi

s,Y
i
s)

from the models above. The results are slightly better for 5,
but we manage to recover the null in both situations.

5.1. Clifford’s Effective Sample Size

We briefly review Clifford’s procedure prior to using it as a
comparator. Clifford et al. (1989) propose to use fM(r) in (1)
as the distribution of reference under the null. The variance
of fM(r) is 1

M−1
. Their suggestion is to estimate the effective

sample size M by M̂ =
⌊
1 + 1

σ̂2
r

⌋
, as a result of equating 1

M−1
to

σ2
r , the variance of the sample correlation. Hence, an estimate

for the null distribution of rXs,Ys is f
M̂

(r).

How to Estimate σ2
r . In Clifford et al. (1989)’s appendix

they prove that σ2
r = var(SXsYs )

E(S2
Xs

)E(S2
Ys

)
to the first order, and un-

der the assumption of normality, where SXsYs is the sam-
ple covariance, S2

Xs
and S2

Ys
are the sample variances of Xs

and Ys, var(SXsYs) = trace(�ξs�ηs
), �ξs = P�XsP , �ηs

=
P�YsP , �Xs , and �Ys are the covariance matrices of Xs

and Ys respectively, P = I − 1
N
11′ and 1 is a vector of 1’s of

dimension N.
An estimate for var(SXsYs) is obtained by imposing a strat-

ified structure on �Xs and �Ys . More precisely, they as-
sume that the set of all ordered pairs of elements of s can
be divided into strata S0, S1, S2, . . ., and that the covariances

within strata are constant. Then, σ̂2
r =

∑
k
NkĈXs (k)̂CYs (k)

N2S2
Xs

S2
Ys

,

where Nk is the number of pairs in stratum Sk and ĈXs(k) =
1
Nk

∑
(i,j)∈Sk

(Xsi − Xk)(Xsj − Xk) is an autocovariance estimate
for stratum Sk. They use the sample variogram to choose the
number of strata.

5.2. Power Analysis and Type I Error Estimates

In this section we estimate the power and type I error of the
test for our procedure, and compare it to Clifford’s approach.

Web Figure 3 summarizes different scenarios for the null
and alternative distributions, as a function of the effect ρ we
would like to detect and the amount of spatial autocorrelation
φ. The power to detect a fixed effect ρ decreases as the spatial
autocorrelation increases. Equivalently, for a fixed φ the power
decreases with the effect size. These data have been simulated
assuming we know the truth, and indicates how well we can
do in each situation. The grid size g is set to 0.05 (N = 441),
but identical results were obtained for grid size g = 0.01 (N =
10, 201).

The simulation experiment goes as follows. For each combi-
nation of autocorrelation in φ ∈ (0.05, 0.1, 0.3) and resolution
in g ∈ (0.05, 0.01), and for the power calculations, for each size
effect in ρ ∈ (0.2, 0.5, 0.8), we simulate 10 independent pairs
(Xj

s,Y
j
s) from the usual model in the grid [0, 1] × [0, 1], with

grid size g and Gaussian autocorrelation function with scale
parameter φ. Then we do the following:

(1) Apply our algorithm to each pair (Xj
s,Y

j
s) with B =

1000, �φ=0.3 = (0.1, 0.2, . . . , 0.9), �φ=0.1 = (0.03, 0.034,

. . . , 0.074), and �φ=0.05 = (0.013, 0.014, . . . , 0.027) re-
spectively. Let (r1, . . . , r10) be the resulting 10 nulls.

(2) Apply Clifford’s method to each pair (Xj
s,Y

j
s) by

generating B independent and normally distributed
random vectors Xi and Y i of dimension M̂. Let
(rCl

1 , . . . , rCl
10) be the resulting 10 nulls, where rCl

j =
(rCl

1j , . . . , rCl
Bj ) and rCl

ij = cor(Xi, Y i).

In addition to that, (rTr
1 , . . . , rTr

10) are 10 nulls under the
truth, by simulating B independent pairs (Xi

s,Y
i
s) from the

same model, where rTr
j = (rCl

1j , . . . , rTr
Bj ) and rTr

ij = cor(Xi
s,Y

i
s).
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Table 1
Type I error estimates obtained by contrasting pairs simulated under H0 : ρXs,Ys = 0, to the null distribution returned by our

algorithm and Clifford’s method, in addition to the true null obtained by simulating independent pairs under model (2)

Type I error estimates

φ = 0.05 φ = 0.1 φ = 0.3

Grid size = 0.05 0.052 (0.024) 0.046 (0.022) 0.048 (0.024) True
0.059 (0.029) 0.056 (0.035) 0.051 (0.041) Ours
0.055 (0.027) 0.055 (0.029) 0.093 (0.045) Clifford

Grid size = 0.01 0.053 (0.027) 0.049 (0.023) 0.051 (0.022) True
0.075 (0.030) 0.051 (0.027) 0.050 (0.045) Ours
0.055 (0.027) 0.058 (0.026) 0.086 (0.044) Clifford

Results are presented for different levels of autocorrelation and resolution: φ ∈ (0.05, 0.1, 0.3) and g ∈ (0.05, 0.01). The standard errors
are in brackets.

The type I error of the test should be equal to the
significance level α = 0.05. We use the nulls (rTr

1 , . . . , rTr
10),

(r1, . . . , r10) and (rCl
1 , . . . , rCl

10) to estimate the type I errors
associated to both methods and the truth. We draw 100 sam-
ples from (Xk

s,Y
k
s) under H0 : ρXs,Ys = 0, and use respec-

tively rTr
j , rj and rCl

j to assess significance of r̂k = cor(Xk
s,Y

k
s),

for k = 1, . . . , 100. Out of the 100 samples, the proportion of
times the p values are smaller than α = 0.05 is an estimate
of the type I error. We repeat the same process for 100 repli-
cates, obtaining 100 type I error estimates. We then repeat
the process again for each null j = 1, . . . , 10 and average the
10 × 100 type I error estimates, which are shown in Table 1.
Estimates of the standard errors are obtained by computing

the standard deviation of the 10 × 100 estimates, and appear
in brackets in the table.

The power of the test is calculated using a similar sam-
pling scheme. We generate pairs (Xk

s,Y
k
s) as before, but then

transform Yk
s ← ηXk

s + Yk
s with η = ρ/

√
(1 − ρ2) (leading to

a population correlation of ρ). The r̂k’s are thus obtained un-
der the alternative hypotheses H1 : ρXs,Ys = ρ. We then fol-
low the same procedure as was done for the type-I errors,
namely steps (1) and (2) above, leading to the power esti-
mates in Table 2.

We highlight the values in Table 1 that most deviate from
α. Type I error estimates for our method are close to α, which
is less of a case for Clifford’s method, except for φ = 0.05.

Table 2
Power estimates obtained by contrasting pairs simulated under H1 : ρXs,Ys = ρ, to the null distribution returned by our
algorithm and Clifford’s method, in addition to the true null obtained by simulating correlated pairs under model (2)

Power estimates

φ = 0.05 φ = 0.1 φ = 0.3

Grid size = 0.05
ρ = 0.2 0.921 (0.026) 0.418 (0.059) 0.103 (0.034) True

0.926 (0.031) 0.444 (0.087) 0.089 (0.042) Ours
0.926 (0.030) 0.446 (0.077) 0.153 (0.045) Clifford

ρ = 0.5 1 (0) 0.997 (0.005) 0.426 (0.055) True
1 (0) 0.997 (0.005) 0.420 (0.089) Ours
1 (0) 0.997 (0.005) 0.558 (0.100) Clifford

ρ = 0.8 1 (0) 1 (0) 0.951 (0.021) True
1 (0) 1 (0) 0.879 (0.127) Ours
1 (0) 1 (0) 0.950 (0.045) Clifford

Grid size = 0.01
ρ = 0.2 0.915 (0.033) 0.405 (0.052) 0.104 (0.030) True

0.935 (0.031) 0.404 (0.073) 0.124 (0.069) Ours
0.927 (0.030) 0.415 (0.064) 0.169 (0.046) Clifford

ρ = 0.5 1 (0) 0.996 (0.007) 0.424 (0.059) True
1 (0) 0.996 (0.007) 0.391 (0.154) Ours
1 (0) 0.996 (0.007) 0.510 (0.111) Clifford

ρ = 0.8 1 (0) 1 (0) 0.937 (0.022) True
1 (0) 1 (0) 0.949 (0.030) Ours
1 (0) 1 (0) 0.972 (0.018) Clifford

Results are presented for different levels of autocorrelation, effect size and resolution: φ ∈ (0.05, 0.1, 0.3), ρ ∈ (0.2, 0.5, 0.8), and g ∈
(0.05, 0.01).
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Note also in Table 2 that power results for our method
are typically closer to the power obtained under the truth,
and that better power results in Clifford’s case go along with
larger type I error estimates, these values are highlighted in
the table.

Finally, observe that there are no obvious differences be-
tween both resolutions, where the grid sizes g = 0.01 and
g = 0.05 correspond to N = 101 × 101 = 10,201 and N = 21 ×
21 = 441, respectively. This is important, as it highlights the
fact that the power of the analysis is mainly driven by the
autocorrelation, and even if we increase significantly the res-
olution, the power stays the same as it is constrained by φ.

6. Discussion

This articles addresses the consequences of spatial autocorre-
lation on the distribution of statistics like correlation between
random fields. We develop a nonparametric approach for sam-
pling from the null-hypothesis of independence, that involves
three steps:

(1) pick one of the fields and estimate the spatial autocor-
relation structure via its variogram

(2) randomly permute the values in this field
(3) apply a local smoothing to the permuted values, using a

bandwidth and rescaling so that its resulting variogram
matches the original in step (1).

Steps (2) and (3) are repeated B times to obtain B realizations
from the null. These realizations can be used to measure many
different kinds of independence, including measures of local
dependence.

A referee of an earlier draft of this article made a useful
suggestion for an alternative and more direct approach. Their
suggestion was to simulate a Gaussian random field accord-
ing to a model of the variogram, with parameters estimated
by weighted least square, maximum likelihood or composite
likelihood, with non-Gaussian data transformed to normal
scores prior to the estimation of the variogram. One of the
advantages of our method, though, is that it does not rely
on model assumptions, which turns it into a more flexible,
non-parametric approach.

Allard et al. (2001) address a related problem in the con-
text of pairs of point processes, where the focus is on local
correlations between pairs of realizations of counts. They ran-
domize one of the processes using local rotations, under the
assumption that locally the process rates are constant. Our
randomization scheme treats broader range correlations, so
the locally constant assumption is not appropriate.

Another approach is proposed by Clifford et al. (1989),
where they estimate an effective sample size that takes the
autocorrelation into account. We compare this approach to
our method through simulations, which show that our algo-
rithm behaves well in practice, with type I error estimates
close to α, and power estimates close to the maximum power
for each combination of φ and ρ.

Since correlation may exist simultaneously at a number of
different geographical scales, the method can be used to cal-
culate a p-value for the global correlation, as well as p values
for the local correlations (p values map), summarizing the

strength of the relationship between both fields in a particu-
lar location.

One of the important consequences of autocorrelation is
that increasing the sample size does not necessarily increase
the power to find significance. There is no concept of sample
size, since what we observe is one realization of the random
field, and the amount of data that we have is the resolution.
The information that the sample provides is limited by the
spatial autocorrelation. Consequently, in practice it may be
more important to focus on using methods that adjust for
autocorrelation, than on collecting more data.

7. Supplementary Materials

Web Figures referenced in Sections 3, 4.1, 5.2, and Appendix
1 are available with this article at the Biometrics website on
Wiley Online Library.

The prototype R code is now available online at
http://www.stanford.edu/ hastie/Papers/biodiversity/

viladomat code.R and at the Biometrics website in Wiley
Online Library.
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Appendix A

The smoothed variogram γ̂ for Xs is defined by smoothing
the empirical variogram using a kernel smoother:

γ̂(u0) =
∑N

i=1

∑N

j=i+1
wijvij∑N

i=1

∑N

j=i+1
wij

. (A.1)

It assigns weights that die off smoothly as distance to
u0 increases, with wij = Kh(‖u0 − uij‖), uij = ‖si − sj‖, vij =
1
2
(Xsi − Xsj )

2 and Kh(x) = exp {−(2.68x)2

2h2
}, the Gaussian ker-

nel is scaled so that their quartiles are at ±0.25h, with h

being the bandwidth (R function ksmooth). The variogram γ̂

is obtained by evaluating (A.1) at distances u = (u1, . . . , u100)
uniformly chosen within the range of pair distances uij.

The theoretical variogram of a stationary random field
Xsi = Wsi + Zi in (2) is:

γ(u) = σ2{1 − ϕ(u)} + τ2, (A.2)

where ϕ(u) is the autocorrelation function of Wsi , typically a
monotone decreasing function with ϕ(0) = 1 and ϕ(u) → 0 as
u → ∞. Its most important feature is its behavior near u = 0,
and how quickly it approaches zero when u increases, which
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reflects the physical extent of the spatial autocorrelation in
the process. When ϕ(u) = 0 for u greater than some finite
value, this value is known as the range of the variogram. The
intercept τ2 corresponds to the nugget variance, the condi-
tional variance of each measured value Xsi given the under-
lying signal value Wsi . The sill is the asymptote τ2 + σ2 and
corresponds to the variance of the observation process Xsi .
Web Figure 4 gives a schematic illustration.

Appendix B

We smooth a given random field Xs by fitting a local con-
stant regression at locations s1, . . . , sN using the R package
locfit (Loader, 2013):

f̂δ(s) =
∑

‖s−si‖≤λs
wsiXsi∑

‖s−si‖≤λs
wsi

, (B.1)

where wsi = Kλs
(‖s − si‖), Kλs

(x) = exp
(

−2.5x2

2λ2s

)
is a Gaussian

kernel, and λs controls the smoothness of the fit. For a fitting
point s, λs is such that the neighborhood contains the k = �Nδ�
nearest points to s in Euclidean distance, where δ ∈ (0, 1) is
a tuning parameter that indicates the proportion of neigh-
bors. Each f̂δ(s) is estimated with the k observations that fall
within the ball Bλs

(s) centered at s and of radius λs (the ker-
nel truncates at one standard deviation). We use a varying λs

because it reduces data sparsity problems by increasing the
radius in regions with fewer observations.

The smoothed variable Xδ
s in Section 4.1 in step 4.1 of the

algorithm is the result of fitting the function (B.1) to Xπ(s).
The local correlations in Figure 1c are calculated using this

same approach. The local correlation at location s is defined
as:

r̂ λ
Xs,Ys

(s) =
∑

‖s−si‖≤λ
wsi(Xsi − Xs)(Ysi − Ys)√∑

‖s−si‖≤λ
wsi(Xsi − Xs)2

∑
‖s−si‖≤λ

wsi(Ysi − Ys)2
,

(B.2)

where Xs =
∑

wsi
Xsi∑

wsi

and Ys =
∑

wsi
Ysi∑

wsi

. We then compute

(B.2) by breaking it down and separately evaluating the quan-

tities
∑

wsiXsi ,
∑

wsiYsi ,
∑

wsiXsiYsi ,
∑

wsiX
2
si

and
∑

wsiY
2
si

using locfit as above.
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