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Multiple rounds of whole genome duplication have repeatedly marked the evolution of vertebrates, and
correlate strongly with morphological innovation. However, less is known about the behavioral, physio-
logical and ecological consequences of genome duplication, and whether these events coincide with
major transitions in vertebrate complexity. The complex behavior of anadromy – where adult fishes
migrate up rivers from the sea to their natal site to spawn – is well known in salmonid fishes. Some
hypotheses suggest that migratory behavior evolved as a consequence of an ancestral genome duplica-
tion event, which permitted salinity tolerance and osmoregulatory plasticity. Here we test whether
anadromy evolved multiple times within salmonids, and whether genome duplication coincided with
the evolution of anadromy. We present a method that uses ancestral character simulation data to plot
the frequency of character transitions over a time calibrated phylogenetic tree to provide estimates
of the absolute timing of character state transitions. Furthermore, we incorporate extinct and extant taxa
to improve on previous estimates of divergence times. We present the first phylogenetic evidence indi-
cating that anadromy evolved at least twice from freshwater salmonid ancestors. Results suggest that
genome duplication did not coincide in time with changes in migratory behavior, but preceded a transi-
tion to anadromy by 55–50 million years. Our study represents the first attempt to estimate the absolute
timing of a complex behavioral trait in relation to a genome duplication event.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Multiple rounds of whole genome duplication have character-
ized the evolution of vertebrates (Jaillon et al., 2004). Specifically,
in actinopterygians (ray-finned fishes), genome duplication events
correlate with bursts of morphological change in extant lineages
(Ohno, 1970; Taylor et al., 2001, 2003; Van de Peer et al., 2003,
2009; Braasch et al., 2009a,b) but see (Heimberg et al., 2008). How-
ever, incorporating fossil taxa into these analyses demonstrates
that morphological complexity accumulated more continuously
through time (Donoghue and Purnell, 2005). Whether episodic or
periodic, little is known about the behavioral consequences of gen-
ome duplication in vertebrates, and if duplication events coincide
with transitions in behavior and physiology (Novak et al., 2006).

The ecophysiological consequences of genome duplication re-
main understudied (Mable, 2004; Soltis et al., 2010; Mable et al.,
2011), but evidence from plants suggests that polyploids are able
to inhabit a greater diversity of environments compared to their
diploid progenitors (Otto and Whitton, 2000). Generally speaking,
duplication events trigger morphological and physiological
changes in size and ecological tolerance (Adams and Wendel,
2005; Hu et al., 2012). For example, recent work suggests that
newly formed polyploid populations are more resistant to para-
sites (Oswald and Nuismer, 2007). Furthermore, polyploidy affects
cellular physiology by altering cell size and enhancing photosyn-
thetic capacity (Warner and Edwards, 1993); it may even change
cellular metabolic rates (Comai, 2005). Less is known about the
ecophysioloical consequences of genome duplication in verte-
brates. In one notable example, mating calls in gray tree frogs fol-
low directly from changes in ploidy, which leads to reproductive
isolation via female mate choice (Mable et al., 2011). The link be-
tween genome duplication and the evolution of complex traits
has also been hypothesized for salmonid fishes (Ohno, 1970).

Salmonids (salmon, trout, char, whitefishes, and graylings) are
one of the most well studied vertebrate groups that have under-
gone genomic duplication. Their migratory behaviors require ma-
jor physiological plasticity, which are known popularly in
Atlantic and Pacific salmon. These fishes are capable of overcoming
tremendous obstacles to return from distant oceans to natal
streams for spawning. This behavior has inspired centuries of re-
search into the evolution of salmon migrations and the origin(s)
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of this life history strategy (McDowall, 2002). Molecular and mor-
phological evidence places the freshwater Esocidae (pikes) as the
closest relatives of salmonids, which suggests that salmonids arose
in freshwater environments (Stearley, 1992; Ishiguro et al., 2003;
Ramsden et al., 2003; Nelson, 2006; Broughton, 2010; Wilson
and Williams, 2010). Furthermore, the Eocene salmonid �Eosalmo
driftwoodensis is preserved in all life stages within freshwater
deposits, offering strong support for non-migratory behavior in
stem-salmonids as well. In addition to complex migratory behav-
ior, all salmonids (estimated to have originated 63.2–58.1 MYA.
(Crete-Lafreniere et al., 2012)) share a tetraploid genome that arose
between 100 and 25 My. (Johnson et al., 1987; Sakamoto et al.,
2000; Angers et al., 2002).

Beginning in the 1970s (Ohno, 1970), authors speculated that
the salmonid duplication event may have provided the genetic
material necessary for the evolution of migratory behavior (Allen-
dorf and Thorgaard, 1984; Phillips and Rab, 2001; Koop et al., 2008;
Norman et al., 2011, 2012). The hypothesis suggests that duplicate
genes (resulting from whole genome duplication) could provide
flexibility for differential optimization, as salmonids transitioned
to a multi-modal life history. Recent evidence suggests that copies
of the FXYD isotypes (Tipsmark, 2008; Tipsmark et al., 2008a,b,c),
ATP1a1b loci (Norman et al., 2011) and other genes involved in
osmoregulation (Gharbi et al., 2004, 2005; Woram et al., 2004;
Danzmann et al., 2005; Norman et al., 2012) may have gained
new functions following duplication events, and permitted an in-
creased tolerance to salinity. A comprehensive analysis of salmon
and pike transcriptomes has revealed an asymmetrical relaxation
of selection on paralogous salmonid genes, allowing individual
paralogs to evolve at faster rates (Leong et al., 2010). Many para-
logs were lost, but remaining paralogs began to diverge (Leong
et al., 2010). This divergence may have been a crucial factor leading
to complex migratory behavior and the resulting access to marine
niches with greater resources and more space. However, the abso-
lute timing of genomic duplication in relation to the evolution of
anadromy remains unknown.

Despite investigations into the consequences of genome dupli-
cation and the origin(s) of migratory behavior in salmonids, at least
two important questions remain unanswered: (1) did complex
migratory behavior evolve multiple times in salmonids? (2) Does
the evolution of salmonid migratory behavior coincide with gen-
ome duplication? These are both phylogenetic questions. Thus,
migratory behavior and ploidy can be treated as traits and studied
using a time calibrated phylogenetic tree. However, one problem
with this approach is that anadromy is highly variable within the
Salmonidae, even at the intraspecific level. Traits with rapid evolu-
tionary rates are difficult to reconstruct because their histories can
be quickly lost (Schluter et al., 1997; Cunningham et al., 1998; Oak-
ley and Cunningham, 2000; Oakley et al., 2005). Furthermore, there
is only one temporal estimate for genomic duplication in salmo-
nids, but confidence intervals span 75 MYA (Allendorf and Thorg-
aard, 1984; Crete-Lafreniere et al., 2012; Shedko et al., 2012).
Despite improvement in this latter approximation, no study thus
far has estimated explicitly the absolute timing of the transition
from diploidy to tetraploidy.

To improve upon previous analyses and test long-standing
questions about salmonid evolution, we utilized new statistical
tools and copious data to evaluate the relationships among phylog-
eny, migratory behavior, and genome duplication. We recon-
structed a phylogenetic tree of salmonids and their close
relatives, and analyzed the character matrix using a mixed-model
multi-partition dataset (DNA and morphology) under Bayesian
and Maximum Likelihood statistical frameworks. Furthermore,
we constructed a series of fossil-calibrated trees by concatenating
extinct and extant taxa, thereby significantly improving upon pre-
vious divergence time estimates. We included a key freshwater
stem-salmonin (�E. driftwoodensis), which offered unique insight
into the transition to migratory behavior. We then mapped the his-
tory of migratory behavior and genome duplication onto the
resulting phylogeny using Bayesian methods (Pagel et al., 2004)
and stochastic character mapping (Bollback, 2006). We estimated
the absolute timing of character transitions with a new method
that uses ancestral character simulation data to plot the frequency
of character transitions per branch on a time-calibrated phylogeny.
This method improves on previous approaches because it esti-
mates character transitions along branches instead of only at
nodes. These methods allowed consideration of uncertainty in
rates of trait evolution, a factor that importantly impacts ancestral
state estimations (Schultz et al., 1996). Our analyses improve upon
most of the limitations of previous studies and strongly support
the parallel evolution of anadromy in salmonid fishes. Results indi-
cate that complex migratory behavior evolved at least twice in sal-
monids (in salmon and whitefishes), but it is unclear how many
times large-scale anadromy evolved, likely due to the rapid evolu-
tion of migratory behavior in crown-Salmoninae. Furthermore, we
provide new estimates of ancestral tetraploidization that suggest
genome duplication significantly preceded the transition to com-
plex migratory behavior in whitefishes.
2. Materials and methods

2.1. Data collection

We constructed a data matrix from 97 species or subspecies-le-
vel salmonids and related outgroups. Our data set included 41 data
partitions. We collected nucleotide sequence data from GenBank
using 16 nuclear and 18 mitochondrial genes (Phillips and Oakley,
1997; Crespi and Fulton, 2004). We also assembled seven categor-
ical data partitions, including morphological data that were com-
piled from three sources, excluding overlapping data (Smith,
1992; Stearley and Smith, 1993; Wilson and Li, 1999). Besides mor-
phology, other categorical data sets included rDNA RFLPs (Phillips
et al., 1992, 1994, 1995), mitochondrial RFLPs (Nielsen et al., 1998;
Carrera et al., 1999), chromosome number (Phillips and Rab, 2001),
Short Interspersed Nuclear Elements (SINEs) (Takasaki et al., 1997;
Hamada et al., 1998), microsatellites (Olsen et al., 2000), and allo-
zymes (Allendorf and Seeb, 2000).

To fossil-calibrate the root of the tree, we extended sampling
beyond Salmonidae to include Esociformes (pikes such as
Novumbra hubbsi and Esox lucius), Osmeriformes (smelts such as
Hypomesus olidus, Plecoglossus altivelis and Argentina sialis), Gonor-
ynchiformes (milkfishes such as Chanos chanos), and Cypriniformes
(zebrafishes such as Danio rerio).
2.2. Phylogenetic analyses

We excluded data sparse taxa from further analyses. In fact, not
all species-level taxa have data for all or even most data partitions:
of the 97 � 41 = 3977 possible combinations of species taxa x data
partition, the complete initial data matrix was 80% missing. With
the exception of fossil taxa – for which only morphological data
are available – we excluded from further analyses species and sub-
species-level taxa containing fewer than three data partitions.
Many excluded taxa were subspecies for which only chromosome
numbers were available. After excluding extremely sparse taxa, the
resulting matrix contained 58 taxa and was 26.6% complete as data
partitions available per taxon (Supplementary Table 1). Nucleotide
data collected from GenBank were aligned using the default
parameters of MUSCLE (Edgar, 2004), with the exception of growth
hormones and intron c; these were aligned manually (Oakley and
Phillips, 1999). Several mitochondrial genomes are available for
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salmonid taxa; these were separated into individual genes for
alignment before concatenating with the entire dataset.

After obtaining an aligned matrix, we conducted numerous
phylogenetic analyses, using Bayesian Inference (BI) and Maximum
Likelihood (ML) approaches. We divided genetic data into parti-
tions by gene and categorical data as binary or multistate. Using
MrBayes 3.1 (Huelsenbeck and Ronquist, 2001), we assumed
GTR + C + I for DNA partitions, which was the best-fit of 56 model
comparisons implemented in jModeltest (Posada, 2008). For all
categorical data, we assumed the Mk model of Lewis (Lewis,
2001). Only branch length parameters were linked across data par-
titions and we assumed default priors for all parameters. To esti-
mate the posterior probability distribution of phylogenetic trees
and rate parameters, we used Metropolis-coupled MCMC with pro-
posal mechanisms described by Nylander et al. (Nylander et al.,
2004). We conducted a run of 10,000,000 generations, sampling
every 100th generation. We excluded the first 100,000 generations
as ‘‘burn-in’’ using Tracer v1.5 (Rambaut and Drummond, 2004),
after which the Markov chain was stationary. Using RAxML (Sta-
matakis, 2006), we did a ML search with a mixed partition model.
Random starting trees were used and topological robustness was
evaluated using 100 non-parametric bootstrap replicates.

We used r8s v 1.7 (Sanderson, 2003) to construct an ultrametric
tree with the best scoring tree from RAxML. To this end, we used a
semi-parametric Penalized Likelihood approach with a truncated
Newton algorithm and bound constraints. We then used BEAST v
1.7.2 (Drummond et al., 2012) to conduct a fully parametric Bayes-
ian analysis on the same data. With BEAST we used several differ-
ent tree priors to compare the outcomes, namely the traditional
Yule model (Gernhard, 2008), the standard Birth–Death model
(Gernhard, 2008), and the Birth–Death model with incomplete
sampling (Stadler, 2009). Furthermore, all categorical data were in-
cluded in the BEAST analyses by coding it into BEAST XML input
(following Pyron, 2011) using a custom R function. Extinct species
taxa were included as dated, non-contemporaneous OTUs (See Ta-
ble 1 for tip dates and calibrations) using the tip-dates function in
BEAUTI v 1.7.2 (Drummond et al., 2012), with the morphological
data encoded BEAST’s XML format as in Pyron (2011) using a cus-
tom R script. The R script converts standard NEXUS-formatted
morphological data (including ambiguities) to BEAST’s format
which requires a single alphanumeric code for each character state
and each combination of ambiguous states (e.g., ‘‘?’’ is encoded as
‘‘Z’’); the ambiguity codes are user-determined and also generated
by the script. The script is available at http://oakley-web.eemb.ucs-
b.edu/ASMO13/. Uncertainty in the dating of fossil OTUs was ac-
counted for with a uniform distribution covering the published
age estimate of the fossil, as done in Wood et al., 2012. All BEAST
runs were fully partitioned, with unlinked substitution-rates,
linked trees, and clock models. Uncorrelated lognormal relaxed
clocks and random starting trees were used for all analyses. Each
Table 1
Fossil dates and calibrations.

Fossil Formation Refer

Multiple taxa Obere solnhofener schichten Germany Arrat
�Oldmanesox sp. Oldman formation, dinosaur provincial park,

alberta Canada
Wilso

�Eosalmo driftwoodensis Driftwood creek formation, allenby formation,
klondike mountain formation Canada

Wilso

�Salvelinus larsoni Lower chalk hills formation, idaho USA Smith
Smith

�Oncorhynchus lacustris Glenns ferry formation, idaho USA Smith

�Oncorhynchus keta Chalk hills formation, malheur co.,
oregon USA

Smith
and S

Fossil data used to calibrate the r8s and BEAST trees showing taxa, formations, referenc
analysis was run for 30,000,000 generations, sampled every
1000th, and checked for stationarity using Tracer v 1.5 (Rambaut
and Drummond, 2004). Consensus trees with mean node values
were constructed using TreeAnnotator v 1.7 (Drummond et al.,
2012) after having determined the appropriate burn-in.

2.3. Trait mapping

We assigned five states to the character of migratory behavior
for mapping onto our phylogenetic trees: state (0) freshwater – tax-
on members spend their entire lives in freshwater; state (1) amp-
hidromous – taxon members migrate between freshwater and
marine stages, but migrations are not directly coupled to spawn-
ing; state (2) small-scale anadromy – taxon members are born in
freshwater before migrating to estuaries or other coastal environ-
ments (upriver migrations are made shortly before spawning);
state (3) large-scale anadromy – taxon members are born in
freshwater before migrating far out to sea, often following ocean
currents for well over a year, rapid upriver migrations are then
made shortly before spawning; and state (4) marine – taxon mem-
bers are born and live entirely in the sea. These character states
reflect our attempt to allow for specific definitions, as well as to ar-
rive at a consensus of previous authors’ opinions (see Supplemen-
tary Table 1). We are the first to use the terms small and large-scale
anadromy: many previous authors do not discriminate between
these categories (McDowall, 2002). By distinguishing them, we
are stating our agreement with Stearley (Stearley, 1992) that the
long migrations to sea by Atlantic and Pacific salmon, which often
follow ocean currents, deserve their own category. However, we
disagree with Stearley (Stearley, 1992) that other salmonids are
not anadromous: he used the term amphidromous for taxa that
conduct migrations a short distance to sea. Therefore, our catego-
ries of small and large-scale anadromy are consistent with most
authors given that they consider many salmonids to be anadro-
mous. Yet we also recognize that large-scale migrations of some
salmon represent a different life history strategy. For character
state simulations of ancestral tetraploidy (see below), we coded
all diploids as 0 (outgroups) and all tetraploid as 1 (salmonids)
(Allendorf and Thorgaard, 1984).

2.4. Ancestral state estimation

We used Bayesian statistics for ancestral state reconstructions,
implemented in the software Bayes-Multistate (Pagel et al.,
2004). A Bayesian approach aims to estimate the distribution of a
particular parameter, such as the probability of a character state
at a certain node. We chose this approach because it considers
uncertainty in both phylogenetic tree topology and in rates of
migratory evolution to reconstruct the most likely condition at
the base of crown-salmonids.
ence Age (MYA) Calibration prior

ia (1997) 165.2–149.85 Ln offset = 149.85 (mean 0, stdev 0.5)
n et al. (1992) 84–70.6 Ln offset = 84 (mean 1, stdev 1)

n and Li (1999) 52–51.5 Tip date mean 51.75 uniform
distribution 51.5–52

(1981) and
(1992)

9.8–7.4 Tip date mean 8.6 uniform
distribution 9.8–7.4

(1981) 5–2.5 Tip date mean 3.75 uniform
distribution 5–2.5

(1992) and Eiting
mith (2007)

6.6–4.8 Ln offset = 6.6 (mean 1, stdev 1)

es, ages, and parameters used for calibration.
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2.5. Absolute timing of character transitions

To estimate the absolute timing of character state changes, we
performed stochastic character mapping (SCM) (Nielsen, 2002;
Huelsenbeck et al., 2003) on fossil-calibrated time trees. We abbre-
viate this approach as time tree stochastic character mapping
(ttSCM). We performed ttSCM for two characters: (1) ploidy
(states = tetraploid and diploid); and (2) migratory behavior (states
described above under ‘‘trait mapping’’). We used 150 time cali-
brated trees pulled from posterior distributions of MCMC chains
that assumed a Yule model tree prior (details described above).
For ploidy levels (ancestral tetraploidization) we used all available
taxa. However, for migratory behavior we analyzed salmonids sep-
arately from their outgroups, since: (1) outgroup migratory traits
are irrelevant to the question of whether anadromy evolved inde-
pendently within salmonids; (2) outgroups are undersampled; and
(3) outgroups are represented by additional character states that
do not occur in salmonids. On each tree, we conducted 100 SCM
simulations for each character. We chose the best-fit model for
each character using standard Likelihood Ratio Tests to compare
nested models (e.g. symmetric vs. asymmetric rate matrices)
(Mooers and Schluter, 1999). We then performed SCM using
make.simmap of the phytools v0.2-90 R package (Revell, 2012).
Make.simmap, like simmap itself (Bollback, 2006), generates simu-
lated character histories with the constraint that tip character
states match observed tip states. Make.simmap first uses ML to
determine parameter values for the model of character evolution.
Next, make.simmap generates samples from a posterior distribu-
tion conditional on the ML-fitted model to reconstruct character
histories on trees. This ML parameter fitting approach is different
from simmap (Bollback, 2006), which samples from a joint poster-
ior of character histories plus substitution rates. The make.simmap
approach is similar in spirit to the empirical Bayes approach for
ASR introduced by Pagel (Pagel et al., 2004), in which character rate
models are set to ML estimates. We wrote custom R-scripts to plot
histograms of the number of state changes in different time bins. In
addition to estimating the timing of migratory transitions across
the whole tree, we used ttSCM to demonstrate its capability to
estimate character transitions on branches of interest. For this
analysis, we established support for the homology of whitefish
anadromy and the non-homology of whitefish and salmon anadr-
omy. We then coded for all taxa a binary character for whitefish
anadromy, with an anadromous whitefish state (1), and a state
(0) for all other taxa. By doing so, we were able to estimate the
absolute difference in timing between tetraploidy and a transition
to anadromy (observed within the Coregoninae).
3. Results

3.1. Data collection

Taxa with the most available data included Oncorhynchus my-
kiss (data available for every partition) and Salmo salar (data avail-
able for 88% of partitions). The most complete data partitions
included morphological data (available for 95% of taxa), chromo-
somal data (two characters, available for 69% of taxa), and ITS-1
(59% of taxa). The final nucleotide alignment consisted of 32,029
bps, which was concatenated with 275 categorical characters over
58 taxa.
3.2. Phylogenetic results

Bayesian and Maximum Likelihood analyses produced phyloge-
netic trees with strong support for most nodes (Fig. 1). The results
of our supermatrix approach have implications for resolving the
tree of life, because we obtained strong phylogenetic signal from
a data matrix that was only 26.6% complete in terms of data parti-
tions available. This is consistent with other studies (Sanderson
et al., 2011). The placement of three freshwater salmoniform
(Fig. 1) clades is particularly relevant to the multiple origins of
anadromy. The nearest salmonid outgroup is a largely freshwater
clade containing Esox and Novumbra. This topology is supported
by other studies based on mitochondrial genome data (Ishiguro
et al., 2003), and other molecular (Lopez et al., 2004) and morpho-
logical characters (Williams, 1987; Wilson and Williams, 2010).
However, the position of the second freshwater clade is more sur-
prising. The freshwater Thymallinae (graylings) emerged as sister
to all other salmonids, with a posterior probability of 1.0. The
Coregoninae are usually considered to be sister to other salmonids,
including thymallins (Stearley and Smith, 1993). The third fresh-
water lineage that impacts the freshwater ancestry hypothesis
is �E. driftwoodensis. This taxon is abundant in the Eocene Green
Lake formation, which preserves all its life history stages. The
stem-position of �Eosalmo in our tree as sister to crown-group Sal-
moninae is consistent with previous phylogenetic analyses (Wilson
and Li, 1999). Our results, therefore, indicate multiple transitions
in salmonins and coregonins from a freshwater ancestry to com-
plex migratory behavior.

By combining molecular and morphological characters, we
present the first fossil-calibrated phylogenetic framework for sal-
monid diversification. Including fossils in the time-calibrated tree
permitted us to incorporate geological ages into the analysis, in-
stead of simply using prior probability distributions on the dates
of nodes. The tip-dating method allows more accurate placement of
temporal constraints, thereby yielding more reliable estimates of
divergence times (Pyron, 2011). The disadvantages of using fossil
taxa to constrain nodes instead of tip dates are apparent in the case
of �Eosalmo. In contrast to previous analyses that used �Eosalmo to
constrain the root of the Salmonidae (Shedko et al., 2012), we
placed �Eosalmo within our phylogeny and applied the constraint
directly to the �Eosalmo branch. Another recent approach used �
Eosalmo to constrain Coregoninae + Salmoninae (Crete-Lafreniere
et al., 2012), which led to a more recent divergence of crown-Sal-
monidae. Furthermore, our approach differs from past studies in
that we included dates from six fossils, three of which are OTUs
that were incorporated directly into the analysis.

Trees recovered using BEAST were nearly identical to those
recovered using RAxML and MrBayes (see Figs. 1 and 2), though
support values for the BEAST trees were slightly higher for all
nodes. One topological difference included the position of the fos-
sil �Salvelinus larsoni, which was recovered as sister to the extant
Salvelinus in BEAST, but which emerged as sister to Parahucho per-
ryi in the RAxML and MrBayes analyses. This indicates that the
inclusion of dating information in a total-evidence analysis might
occasionally change the inference of tree topology, as suggested
by Ronquist et al. (2012). This should not be surprising, since more
information is being considering in an analysis with dated fossil
OTUs relative to an undated analysis. The ages of fossils might con-
strain their possible positions in a dated tree. The phylogenetic po-
sition of �S. larsoni remains uncertain because of low support from
all utilized methods. Divergence time estimates were similar be-
tween the r8s analysis and all BEAST trees, with the latter yielding
slightly older dates (Fig. 2). Overall, the three BEAST trees (Yule,
birth–death, and birth–death with incomplete sampling) produced
nearly identical topologies and dates, with no obvious differences.
The root of Salmonidae (using mean values from all separate BEAST
analyses; Yule tips, BD tips, BD Inc. tips) was estimated at 69.6 Ma
with highest posterior density (HPD) values ranging between 78.3
and 60.8 MYA across all separate speciation models. This repre-
sents a vast improvement in confidence compared to previous
estimates.
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Fig. 1. Phylogeny & trait mapping. A consensus phylogeny from the RAxML analysis showing support values from bootstrap replicates, posterior probabilities, and ancestral
states of migratory behavior for major nodes. Each taxon is color-coded according to habitat preference and migratory behavior. Tip labels that are not colored represent taxa
that lack data on migratory behavior (both cases are extinct). Fossil taxa are denoted with a cross.
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3.3. Ancestral state estimation

With a one-rate model, patterns of trait evolution were similar
whether using a flat prior distribution or a prior based on the like-
lihood of the single rate parameter. In both cases, the ancestral
states of Salmonidae and Salmoninae were reconstructed as ‘‘fresh-
water’’ with posterior probabilities greater than 0.95. Neither anal-
ysis could unambiguously reconstruct the migratory behavior of
the most recent common ancestor of Atlantic and Pacific salmon
(the node of common ancestry between Salmo and Oncorhynchus).
See Fig. 1 for ancestral state estimates of respective nodes.
3.4. Absolute timing of character transitions

The absolute timing of salmonid tetraploidization was esti-
mated using time tree stochastic character mapping (ttSCM). We
used an equal rates (ER) model with coequal rates between diploid
and tetraploid states.

Assuming an equal rates model, we plotted a histogram of tran-
sitions per branch across the tree in 10 million year time bins
(Fig. 3A and B). The time bin with the highest number of transitions
per branch is 80–70 MYA, with a distribution of bins ranging from
80–50 MYA. This estimate is consistent with a previous estimate of
100–25 MYA (Allendorf and Thorgaard, 1984), and with the results
of a recent salmonid phylogeny (Crete-Lafreniere et al., 2012). As
expected, it is also slightly older than our estimates for the root
of crown-group Salmonidae (78.3–60.8 MYA), which previous ap-
proaches (those that constrained character changes to nodes)
would perceive as the original timing of tetraploidization. How-
ever, because ttSCM permits character changes along branches, it
provides older estimates relative to methods that constrain only
nodes.

We also estimated the timing of migratory transitions over sal-
monid evolution. We plotted transitions per branch for three char-
acter states: freshwater, small scale anadromy, and large-scale
anadromy (Fig. 4). Using a Likelihood-Ratio Test we found that a
symmetric model fits migratory patterns better than ER or ARD
models (p-value rejecting ARD = 0. 0.2460857, p-value rejecting
ER = 1). The highest rate of transitions per branch to freshwater
habitats occurred during the early history of salmonids
(75–70 MYA); transitions to small-scale anadromy per lineage
peaked 30–20 MYA; and transitions to large-scale anadromy
peaked 10–5 MYA. Although it is possible to identify maximum
time bins, the nature of the data and the Markov models leads to
large numbers of character transitions through time, and therefore
the time bins across the tree are very long. Early transitions to
freshwater and late transitions to large-scale anadromy are consis-
tent with an ancestral freshwater environment, and the indepen-
dent origins of migratory behavior. Moreover, the intermediate
timing of maximal transitions to small-scale anadromy is consis-
tent with the possibility of common, ordered character transitions
from freshwater to small-scale anadromy to large-scale anadromy.

We also estimated the timing of the transition from freshwater
to small-scale anadromy on the branch leading to Coregoninae
(Fig. 3C and D). The maximum time bin was 25–20 MYA, with a
distribution spanning the entire length of the branch. Coupled with
estimates of the transition to tetraploidy, this result further sup-
ports the hypothesis that genome duplication significantly pre-
ceded the evolution of complex migratory behavior by 55–50 MYA.

All custom scripts used in this study have been made available
for download at http://oakley-web.eemb.ucsb.edu/ASMO13/. The

http://oakley-web.eemb.ucsb.edu/ASMO13/
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morphological data matrix has been made available online at
Morphobank (Project ID: 608).
4. Discussion

We present the first quantitative test showing that complex
migratory behavior evolved at least twice within salmonids
(in Coregoninae and Salmoninae), and that genomic duplication
in salmonids significantly predated transitions from freshwater
to anadromous behavior. We incorporate fossil taxa by concatenat-
ing molecular and morphological characters. This approach repre-
sents an improvement on previous inferences of salmonid
evolution and estimates of divergence times by placing prior cali-
brations directly on fossil taxa instead of constraining nodes. Fur-
thermore, including life history information (e.g. anadromy) for
key fossil taxa (e.g. �E. driftwoodensis), allowed us to incorporate
fossil characters into a reconstruction of migratory behavior. We
estimated the absolute timing of character transitions along
branches (as opposed to nodes), and used this method to calculate
the timing of genome duplication and the evolution of anadromy.
Our results suggest that the duplication event occurred at least
55–50 MYA before a transition to anadromy within Coregonidae,
and thereby preceded the origin of salmonid migrations.
4.1. Phylogeny and divergence times

A couple of recent studies used fossil constraints to calibrate the
salmonid molecular clock (Allendorf and Thorgaard, 1984; Crete-
Lafreniere et al., 2012; Shedko et al., 2012). The topology of the
trees recovered in these studies is similar to our own, however,
the divergence times differ significantly. Shedko et al. (2012) used
two calibration points, one for Oncorhynchus (11.6–5.3 MYA) and
one for Salmonidae (55.8–33.9 MYA), which led to the more recent
divergence estimates. Our results also differ from Crete-Lafreniere
et al. (Crete-Lafreniere et al., 2012). Despite the use of the same
fossil taxa and a very similar dataset, their divergence estimates
were older than the results presented here. The primary source
of these differences seems to be the placement of �Eosalmo, and
the choice of which node to constrain. We overcome this problem
by including morphological data from �Eosalmo (and other fossils)
in order to date them as tips in our tree. We also extended our sam-
pling significantly outside of salmonids to include additional
calibration points for salmoniform and euteleostean fishes.

Including fossils in a phylogeny is important because they rep-
resent distinct tips in a tree with individual branch lengths (Pyron,
2011). However, most studies use fossil information to constrain
nodes among extant taxa. We used a combination of these
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standardized across graphs to show the number of transitions to each state on the y-axis and the time after the root on the x-axis.
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calibration strategies (as in Wood et al., 2012), including prior
distributions on the dates of particular nodes representing more
complete fossils, and dated fossil taxa as terminal tips. The phylo-
genetic and ecological histories of �Eosalmo (as a stem-Salmoninae
that inhabited lacustrine habitats) contribute strongly to the fresh-
water signal in crown-Salmoninae. Other fossil taxa included in the
phylogeny (�S. larsoni and �Oncorynchus lacustris) are ambiguous in
terms of migratory behavior. Nevertheless, using fossil taxa as tips
in a phylogeny offers various advantages. Namely, the molecular
clock can be calibrated automatically while co-estimating the phy-
logeny using extinct taxa of known age (Pyron, 2011; Heikkila
et al., 2012). This approach sets our calibrated phylogeny apart
from the surprisingly few other attempts that estimate diver-
gence times in salmonids (Allendorf and Thorgaard, 1984; Crete-
Lafreniere et al., 2012; Shedko et al., 2012).

4.2. Multiple origins of anadromy

The evolution of salmonid migratory behavior has interested
biologists for centuries (Pennant, 1776; Fleming, 1828; Günther,
1866; Buckland, 1873; Day, 1887; Meek, 1916; Tchernavin, 1939;
Hoar, 1976; Thorpe, 1982; Stearley, 1992; McDowall, 2002). Migra-
tion may present advantages such as increased access to resources
and tolerance to environmental changes. Considering the benefits,
it is not surprising that migratory behavior could have evolved
multiple times, resulting in different variations on the same theme.
We classify these variations as large-scale anadromy and small-scale
anadromy, and consider them to be distinct behaviors based on the
travel distance from spawning grounds to the sea. This distinction
between different forms of anadromy leads to a question of
whether transitions to anadromy occurred through gradual steps
(i.e. from freshwater to small-scale and then large-scale anadr-
omy), or whether the large-scale anadromy evolved directly from
a freshwater ancestor. Furthermore, this remains unclear partly
due to the homoplasious nature of the character, and to limitations
of existing methods used to trace the evolutionary histories of rap-
idly evolving characters.

4.3. Genome duplication and anadromy

Cytogenetic evidence suggests that tetraploidy likely arose at
the root of Salmonidae (Allendorf and Thorgaard, 1984; Phillips
and Rab, 2001; Ramsden et al., 2003). Our results concur, and fur-
ther show that genome duplication significantly preceded at least
one origin of complex migratory behavior within salmonids. How-
ever, at least two competing hypotheses may explain the time
discordance between genome duplication and migration. The first
hypothesis suggests that the genome duplication event may have
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provided the genetic material necessary for the evolution of migra-
tory behavior (Ohno, 1970; Allendorf and Thorgaard, 1984; Phillips
and Rab, 2001; Koop et al., 2008; Norman et al., 2011, 2012). Dupli-
cated genes can gain new functions over time and affect complex
morphological, behavioral, and physiological traits (Lynch and
Conery, 2000; Semon and Wolfe, 2007; Mable et al., 2011). In the
case of salmonids, a whole genome duplication event generated a
full set of new genes, providing novel gene copies with potential
adaptive qualities. Some of these new gene copies could have
gained new functions, optimized via selection to allow species to
physiologically adapt to different environments. This optimization
could have resulted in increased salinity tolerance and plasticity in
osmoregulatory functions, allowing salmonids to extent out of
their ancestral freshwater habitats into more productive habitats
such as estuaries and oceans. Furthermore, the observed lag
between genome duplication and transitions to anadromy (55–
50 MYA) may have been necessary to allow time for paralogs to
diverge significantly and gain new function or sub-functionalize.
However, genomic evidence suggests that most duplicated genes
are lost or silenced within a few million years after duplication
(Lynch and Conery, 2000). Additionally, many genes that are dupli-
cated during whole-genome duplication events become deleteri-
ous and cause epigenetic instability via non-additive gene
regulation (Comai, 2005).

The second hypothesis proposes that there is no causal relation-
ship between genome duplication and the evolution of migratory
behavior. Some evidence suggests that duplicate copies of salmo-
nid genes involved in osmoregulation may have gained new func-
tions and permitted an increased tolerance to salinity (Gharbi
et al., 2004, 2005; Woram et al., 2004; Danzmann et al., 2005; Tips-
mark, 2008; Tipsmark et al., 2008a,b,c; Norman et al., 2011, 2012).
Nonetheless, these duplicated genes may have arisen post genome
duplication as independent events that did not result directly from
tetraploidy. Additional comparative genomic data will be required
to estimate the timing of adaptive gene duplications. Our results
provide an estimate of the timing of tetraploidy in salmonids that
can be used for such comparisons.

4.4. Time tree stochastic character mapping (ttSCM)

The ability to calculate the absolute timing of character transi-
tions was crucial in testing whether genome duplication coincided
or preceded transitions to migratory behavior. Although multiple
previous authors have estimated character histories on fossil-cali-
brated time trees (e.g. Wiens et al., 2006; Syme and Oakley, 2012),
traditional ancestral state estimation methods (e.g., maximum
likelihood) usually provide probabilities of different character
states at the nodes of trees, although this is mostly a matter of
computational convenience and graphical display, and not intrinsic
to the statistical method. In contrast, SCM simulates character his-
tories, providing a ready-made probabilistic display of the charac-
ter state histories along branches of the tree. We are unaware of
previous authors using SCM on a time tree for absolute estimates
of character state timing. Estimates of the absolute timing of state
changes can allow comparisons of character evolution to geological
events, and to the timing of other characters.

We report not the total number of state changes per time bin,
but the state changes per branch during each time bin. This is be-
cause SCM simulates numerous changes on each branch that stem
from the rapid rates of character evolution estimated by the Mar-
kov model. The high numbers of inferred changes often seem coun-
ter-intuitive, and may indicate that homogeneous models poorly
describe the evolutionary process of many characters. Instead,
models that permit various rates across a tree may better represent
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character evolution (Skinner, 2010). Thus, in our analyses, when
rates of evolution were high, we noted that raw histograms mainly
reflected the number of lineages through time: when state changes
occur on all branches, more branches yield more total changes. In
this way, measuring state changes per branch reveals a more re-
fined understanding of character history.

5. Conclusions

We present the first phylogenetic analysis to support multiple
evolutionary transitions to migratory behavior in salmonids. We dis-
covered that anadromy evolved at least twice within the group, a
conclusion supported by statistically robust comparative results.
Furthermore, we find support in one instance that genome duplica-
tion preceded the evolution of anadromy by 55–50 MYA. Our results
suggest for future studies the benefit of combining data from Recent
and fossil records to study the evolution of complex traits.
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