Marine biodiversity from zero to a thousand meters at Clipperton Atoll (Île de La Passion), Tropical Eastern Pacific

TitleMarine biodiversity from zero to a thousand meters at Clipperton Atoll (Île de La Passion), Tropical Eastern Pacific
Publication TypeJournal Article
Year of Publication2019
AuthorsFriedlander AM, Giddens J, Ballesteros E, Blum S, Brown EK, Caselle JE, Henning B, Jost C, Salinas-de-León P, Sala E
JournalPeerJ
Volume7
Paginatione7279
ISSN2167-8359
KeywordsClipperton Atoll, Coral Reefs, Deep sea, Depth gradients, Île de La Passion, Marine biodiversity, Marine reserve, Mesophotic reefs, Oxygen minimum zone, Tropical Eastern Pacific
Abstract

Clipperton Atoll (Île de La Passion) is the only atoll in the Tropical Eastern Pacific (TEP) ecoregion and, owing to its isolation, possesses several endemic species and is likely an important stepping stone between Oceania, the remainder of the TEP, including other oceanic islands and the west coast of Central America. We describe the biodiversity at this remote atoll from shallow water to depths greater than one thousand meters using a mixture of technologies (SCUBA, stereo baited remote underwater video stations, manned submersible, and deep-sea drop cameras). Seventy-four unique taxa of invertebrates were identified during our expedition. The majority (70%) of these taxa were confined to the top 400 m and consisted mostly of sessile organisms. Decapod crustaceans and black corals (Antipatharia) had the broadest depth ranges, 100–1,497 m and 58–967 m, respectively. Decapods were correlated with the deepest depths, while hard corals were correlated with the shallow depths. There were 96 different fish taxa from 41 families and 15 orders, of which 70% were restricted to depths <200 m. While there was a decreasing trend in richness for both fish and invertebrate taxa with depth, these declines were not linear across the depth gradient. Instead, peaks in richness at ∼200 m and ∼750 m coincided with high turnover due to the appearance of new taxa and disappearance of other taxa within the community and is likely associated with the strong oxygen minimum zone that occurs within the region. The overall depth effect was stronger for fishes compared with invertebrates, which may reflect ecological preferences or differences in taxonomic resolution among groups. The creation of a no-take marine reserve 12 nautical miles around the atoll in 2016 will help conserve this unique and relatively intact ecosystem, which possesses high predator abundance.

URLhttps://doi.org/10.7717/peerj.7279
DOI10.7717/peerj.7279
Files: 
PDF icon PDF